Question 1

$$
\begin{aligned}
f_{1}\left(y_{-1}, x_{1} \ldots x_{N}, j, y\right)= & 1 \text { if } j=1 \text { and } y \in\{A, B\} \\
= & 0 \text { otherwise } \\
f_{2}\left(y_{-1}, x_{1} \ldots x_{N}, j, y\right)= & 1 \text { if } j \geq 2 \text { and } \\
& \mathrm{NOT}\left(y_{-1}, y \in\{A, B\} \text { or } y_{-1}, y \in\{C, D\}\right) \\
= & 0 \text { otherwise }
\end{aligned} \quad \begin{aligned}
& \\
& f_{3}\left(y_{-1}, x_{1} \ldots x_{N}, j, y\right)= 1 \text { if } \operatorname{odd}\left(x_{j}\right) \text { and } y \in\{A, C\} \\
&= 0 \text { otherwise }
\end{aligned} \quad \begin{aligned}
& \\
& f_{4}\left(y_{-1}, x_{1} \ldots x_{N}, j, y\right)= 1 \text { if even }\left(x_{j}\right) \text { and } y \in\{B, D\} \\
& 0 \text { otherwise }
\end{aligned}
$$

Here odd (x) returns true if x has an odd number of letters. even (x) returns true if x has an even number of letters. $\operatorname{NOT}(T R U E)=F A L S E$ and $\operatorname{NOT}(F A L S E)=T R U E$.

Define a feature-vector representation

$$
f\left(t_{1} \ldots t_{m}, j, y\right)
$$

where:

- y is the label (STARTS (S), START(VP), START (NP), etc.)
- $t_{1} \ldots t_{m}$ are the sequence of subtrees in the current parser state
- j is the index of the left-most subtree that does not have $\operatorname{START}(. .$.$) or \operatorname{JOIN}(. .$.$) as its root$

Question 2 Continued

We can then define the following feature:

$$
f\left(t_{1} \ldots t_{m}, j, y\right)=1
$$

if and only if:

- $y=\operatorname{JOIN}(\mathrm{VP})$
- root label of $t_{j-1}=\operatorname{START}(\mathrm{VP})$, and head-word of t_{j-1} is questioned
- root label of $t_{j}=\mathrm{NP}$, and head-word of t_{j} is witness
- root label of $t_{j+1}=\mathrm{IN}$, and head-word of t_{j+1} is about
- root label of $t_{j+2}=\mathrm{NP}$, and head-word of t_{j+2} is revolver

Note: the feature is 0 if the above conditions are not met. We can introduce a similar feature for each possible value of the label y (e.g., START(NP) etc.)

