
Flipped Classroom Questions on Recurrent Networks and Attention
Michael Collins
Question 1: Consider the equations for a recurrent model mapping an input source language sentence
x1 . . . xn to an output target language sentences y1 . . . ym:

Inputs: A sequence x1 . . . xn where each xj ∈ Rd.

Definitions: θi,j,n ∈ R is a parameter for aligning source word i to target word j
given source sentence length n
Computational Graph:

• Encoding step: use a bi-directional LSTM to map the input sentence
x1 . . . xn to a new sequence u(1) . . . u(n).

• Decoding: For j = 1 . . .m

– Define
ai,j = ︸ ︷︷ ︸

COMPLETE CODE HERE

– Set c(j) =
∑n

i=1 ai,ju
(i)

– β(j) = g(Whcc(j) + bh)

– l(j) = V × β(j) + γ

– yj = argmaxy l
(j)
y

– j = j + 1

– Until yj−1 = STOP

• Return y1 . . . yj−1

Question 1a: How would you complete the code above to give similar behavior to IBM model 2? Recall
that in IBM model 2 we have alignment parameters q(i|j,m, n) and translation parameters t(f |e).

Question 1b: Draw the computational graph for this model (you can take the inputs to this computation
graph to be u(1) . . . u(n); there is no need to draw the computational graph for the encoding LSTM.

Question 1c: Suppose we have a training set consisting of the dog/le chien the cat/le chat and the
hospital/l’hôpital. How would you set the θi,j,n,m parameters to model this data?

1

Question 1d: Suppose we now wish for each vector of alignment variables aj = 〈a1,j . . . an,j〉 to
depend on the previous alignment variables aj−1, and the previous target-language word yj−1. How would
you alter the equations in the figure to achieve this?

Question 2: Consider the attention-based model for translation given in the lecture slides. The following
pseudo-code can be used to calculate the distribution

p(y|y1 . . . yk−1, x1 . . . xn)

for any input sentence x1 . . . xn and target language prefix y1 . . . yk−1:

Inputs: Source language sentence x1 . . . xn, target language prefix y1 . . . yk−1
Goal: Compute the conditional distribution

p(y|y1 . . . yk−1, x1 . . . xn)

• Encoding step: use an LSTM to map x1 . . . xn to u(1) . . . u(n)

• Decoding step: For j = 1 . . . (k − 1)

– For i = 1 . . . n,
si,j = A(β(j−1), u(i); θA)

– For i = 1 . . . n,

ai,j =
exp{si,j}∑n
i=1 exp{si,j}

– Set c(j) =
∑n

i=1 ai,ju
(i)

– β(j) = LSTM(CONCAT(yj−1, c(j)), β(j−1); θD)

– l(j) = V × CONCAT(β(j), yj−1, c(j)) + γ, q(j) = LS(l(j)),

• Output: q(j) such that
q(j)y = log p(y|y1 . . . yk−1, x1 . . . xn)

(Continued over page.)

2

Consider a beam-search algorithm for decoding with this model. Assume for simplicity that the input to
the algorithm is an integer m specifying the length of the target language sentence. You can make use of the
following primitives:

• BEAM(k) for k = 0 . . .m is a set of items. Each item is a pair (y1 . . . yk, score) where y1 . . . yk is a
partial translation, and

score =
k∑

j=1

log p(yj |y1 . . . yj−1, x1 . . . xn)

• The function ADD(y1 . . . yk, score) adds a partial translation together with a score to BEAM(k). If
the partial translation is not in the top 10 highest scoring partial translations in BEAM(k), it is not
added. If after the addition there are more than 10 items in the beam, only the top 10 highest scoring
items are retained in the beam. (The beam keeps the top 10 most likely translations at each point)

• INIT(BEAM) initializes BEAM(k) to be the empty set for k ≥ 1, and initializes BEAM(0) to contain
a single entry with partial translation equal to ε (the empty string), and score equal to 0.

• “foreach (y1 . . . yk, score) ∈ BEAM(k)” initializes a foreach loop over the items in BEAM(k)

• We can use the computational graph in the pseudo-code above to calculate the distribution

log p(y|y1 . . . yk−1, x1 . . . xn)

for any prefix y1 . . . yk−1

• Finally, ARGMAX(BEAM) returns the highest scoring y1 . . . yk, score pair in BEAM(1)∪BEAM(2) . . .∪
BEAM(m) such that yk = STOP

Question 2a: Write pseudo-code for a beam-search algorithm using the above primitives. The algorithm
should take a source language sentence x1 . . . xn, and an integer m specifying the maximum output length,
as inputs.

Question 2b: If we naively calculate

p(y|y1 . . . yk−1, x1 . . . xn)

using the code given above, there will be a lot of repeated (wasted) computation. How would you make the
algorithm more efficient, by caching some computation?

3

Question 3: Consider the function that maps a vector s ∈ Rd to a new vector a ∈ [0, 1]d through the
softmax function:

aj =
exp{sj}∑d
i=1 exp{si}

This is the function frequently used in attention-based models.
For each j = 1 . . . d, what is the value for

∂aj
∂sj

For each j, j′ such that j 6= j′, what is the value for

∂aj
∂sj′

Hint: recall the quotient rule for differentiation. If f(x) = g(x)/h(x), and f ′(x)/g′(x)/h′(x) is the
derivative of f(x)/g(x)/h(x) respectively, then

f ′(x) =
g′(x)h(x)− g(x)h′(x)

(h(x))2

4

