Question 1a

Question 1a (continued)

The three paths from $W^{h x}$ to o are

$$
\begin{gathered}
W^{h x} \rightarrow h^{(3)} \rightarrow l \rightarrow q \rightarrow o \\
W^{h x} \rightarrow h^{(2)} \rightarrow h^{(3)} \rightarrow l \rightarrow q \rightarrow o \\
W^{h x} \rightarrow h^{(1)} \rightarrow h^{(2)} \rightarrow h^{(3)} \rightarrow l \rightarrow q \rightarrow o
\end{gathered}
$$

Question 1b

$$
\begin{aligned}
\frac{\partial o}{\partial W^{h x}}= & A \times \frac{\partial h^{(3)}}{\partial W^{h x}} \\
& +A \times B^{2} \times \frac{\partial h^{(2)}}{\partial W^{h x}} \\
& +A \times B^{2} \times B^{1} \times \frac{\partial h^{(1)}}{\partial W^{h x}}
\end{aligned}
$$

Question 1c

The values for all non-leaf variables- $h^{(1)}, h^{(2)}, h^{(3)}, l, q, o$-vary as x_{1} varies. Because of this all Jacobians in the graph vary as x_{1} varies (the Jacobians for any non-leaf variables depend on the value of the variable computed in the forward pass).

Question 2a

Inputs: A sequence $x_{1} \ldots x_{n}$ where each $x_{j} \in \mathbb{R}^{d}$. A label $y \in$ $\{1 \ldots K\}$ for position i.

Computational Graph:

- For $t=1 \ldots n, h^{(t)}=g\left(W^{h x} x^{(t)}+W^{h h} h^{(t-1)}+b^{h}\right)$
- For $t=n \ldots 1, \eta^{(t)}=g\left(W^{b h x} x^{(t)}+W^{b h h} \eta^{(t+1)}+b^{b h}\right)$
- For $t=1 \ldots n$, $h^{(2, t)}=g\left(W^{2 h x} \times \operatorname{CONCAT}\left(h^{(t)}, \eta^{(t)}\right)+W^{2 h h} h^{(2, t-1)}+b^{2 h}\right)$
- For $t=n \ldots 1$, $\eta^{(2, t)}=g\left(W^{2 b h x} \times \operatorname{CONCAT}\left(h^{(t)}, \eta^{(t)}\right)+W^{2 b h h} \eta^{(2, t+1)}+b^{2 b h}\right)$
- $l=V \times \operatorname{CONCAT}\left(h^{(2, i)}, \eta^{(2, i)}\right)+\gamma, \quad q=\operatorname{LS}(l), o=-q_{y}$

Question 2b

Inputs: A sequence $x_{1} \ldots x_{n}$ where each $x_{j} \in \mathbb{R}^{d}$. A label $y \in$ $\{1 \ldots K\}$ for position i. A sequence of tags $y_{1} \ldots y_{i-1}$.

Computational Graph:

- For $t=1 \ldots n, h^{(t)}=g\left(W^{h x} x^{(t)}+W^{h h} h^{(t-1)}+b^{h}\right)$
- For $t=n \ldots 1, \eta^{(t)}=g\left(W^{b h x} x^{(t)}+W^{b h h} \eta^{(t+1)}+b^{h}\right)$
- For $j=1 \ldots(i-1), \beta^{(j)}=g\left(W^{h y} y^{(j)}+W^{y h h} \beta^{(j-1)}+b^{y}\right)$
- $l=V \times \operatorname{CONCAT}\left(h^{(i)}, \eta^{(i)}, \beta^{(i-1)}\right)+\gamma, \quad q=\operatorname{LS}(l), o=-q_{y}$

Question 3

- $z^{(t)}$ controls how much the new hidden state $h^{(t)}$ copies information across from $h^{(t-1)}$, and how much a new update is incorporated
- $r^{(t)}$ controls how much of $h^{(t-1)}$ is reset to zero in the update part of the network

