
Tagging Problems, and Hidden Markov Models

Michael Collins, Columbia University

Overview

I The Tagging Problem

I Generative models, and the noisy-channel model, for
supervised learning

I Hidden Markov Model (HMM) taggers

I Basic definitions
I Parameter estimation
I The Viterbi algorithm

Part-of-Speech Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street,
as their CEO Alan Mulally announced first quarter results.

OUTPUT:
Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N
Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun
V = Verb
P = Preposition
Adv = Adverb
Adj = Adjective
. . .

Named Entity Recognition

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping

forecasts on [Location Wall Street], as their CEO [Person Alan Mulally]

announced first quarter results.

Named Entity Extraction as Tagging
INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street,
as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA

topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA

their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA

quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
. . .

Our Goal
Training set:
1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD
join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN
Nov./NNP 29/CD ./.
2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP
N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.
3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC
chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP
,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN
this/DT British/JJ industrial/JJ conglomerate/NN ./.
. . .
38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN
of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG
Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG
them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

I From the training set, induce a function/algorithm that maps
new sentences to their tag sequences.

Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC

Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT

would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN

bailout/NN agency/NN can/MD raise/VB capital/NN ./.

I “Local”: e.g., can is more likely to be a modal verb MD
rather than a noun NN

I “Contextual”: e.g., a noun is much more likely than a
verb to follow a determiner

I Sometimes these preferences are in conflict:

The trash can is in the garage

Overview

I The Tagging Problem

I Generative models, and the noisy-channel model, for
supervised learning

I Hidden Markov Model (HMM) taggers

I Basic definitions
I Parameter estimation
I The Viterbi algorithm

Supervised Learning Problems

I We have training examples x(i), y(i) for i = 1 . . .m. Each x(i)

is an input, each y(i) is a label.

I Task is to learn a function f mapping inputs x to labels f(x)

I Conditional models:

I Learn a distribution p(y|x) from training examples
I For any test input x, define f(x) = argmaxy p(y|x)

Supervised Learning Problems

I We have training examples x(i), y(i) for i = 1 . . .m. Each x(i)

is an input, each y(i) is a label.

I Task is to learn a function f mapping inputs x to labels f(x)

I Conditional models:

I Learn a distribution p(y|x) from training examples
I For any test input x, define f(x) = argmaxy p(y|x)

Generative Models

I We have training examples x(i), y(i) for i = 1 . . .m. Task is
to learn a function f mapping inputs x to labels f(x).

I Generative models:

I Learn a distribution p(x, y) from training examples
I Often we have p(x, y) = p(y)p(x|y)

I Note: we then have

p(y|x) = p(y)p(x|y)
p(x)

where p(x) =
∑

y p(y)p(x|y)

Generative Models

I We have training examples x(i), y(i) for i = 1 . . .m. Task is
to learn a function f mapping inputs x to labels f(x).

I Generative models:

I Learn a distribution p(x, y) from training examples
I Often we have p(x, y) = p(y)p(x|y)

I Note: we then have

p(y|x) = p(y)p(x|y)
p(x)

where p(x) =
∑

y p(y)p(x|y)

Generative Models

I We have training examples x(i), y(i) for i = 1 . . .m. Task is
to learn a function f mapping inputs x to labels f(x).

I Generative models:

I Learn a distribution p(x, y) from training examples
I Often we have p(x, y) = p(y)p(x|y)

I Note: we then have

p(y|x) = p(y)p(x|y)
p(x)

where p(x) =
∑

y p(y)p(x|y)

Decoding with Generative Models
I We have training examples x(i), y(i) for i = 1 . . .m. Task is

to learn a function f mapping inputs x to labels f(x).

I Generative models:

I Learn a distribution p(x, y) from training examples
I Often we have p(x, y) = p(y)p(x|y)

I Output from the model:

f(x) = argmax
y
p(y|x)

= argmax
y

p(y)p(x|y)
p(x)

= argmax
y
p(y)p(x|y)

Decoding with Generative Models
I We have training examples x(i), y(i) for i = 1 . . .m. Task is

to learn a function f mapping inputs x to labels f(x).

I Generative models:

I Learn a distribution p(x, y) from training examples
I Often we have p(x, y) = p(y)p(x|y)

I Output from the model:

f(x) = argmax
y
p(y|x)

= argmax
y

p(y)p(x|y)
p(x)

= argmax
y
p(y)p(x|y)

Decoding with Generative Models
I We have training examples x(i), y(i) for i = 1 . . .m. Task is

to learn a function f mapping inputs x to labels f(x).

I Generative models:

I Learn a distribution p(x, y) from training examples
I Often we have p(x, y) = p(y)p(x|y)

I Output from the model:

f(x) = argmax
y
p(y|x)

= argmax
y

p(y)p(x|y)
p(x)

= argmax
y
p(y)p(x|y)

Overview

I The Tagging Problem

I Generative models, and the noisy-channel model, for
supervised learning

I Hidden Markov Model (HMM) taggers

I Basic definitions
I Parameter estimation
I The Viterbi algorithm

Hidden Markov Models
I We have an input sentence x = x1, x2, . . . , xn

(xi is the i’th word in the sentence)

I We have a tag sequence y = y1, y2, . . . , yn
(yi is the i’th tag in the sentence)

I We’ll use an HMM to define

p(x1, x2, . . . , xn, y1, y2, . . . , yn)

for any sentence x1 . . . xn and tag sequence y1 . . . yn of the
same length.

I Then the most likely tag sequence for x is

arg max
y1...yn

p(x1 . . . xn, y1, y2, . . . , yn)

Trigram Hidden Markov Models (Trigram HMMs)

For any sentence x1 . . . xn where xi ∈ V for i = 1 . . . n, and any
tag sequence y1 . . . yn+1 where yi ∈ S for i = 1 . . . n, and
yn+1 = STOP, the joint probability of the sentence and tag
sequence is

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi)

where we have assumed that x0 = x−1 = *.

Parameters of the model:

I q(s|u, v) for any s ∈ S ∪ {STOP}, u, v ∈ S ∪ {*}
I e(x|s) for any s ∈ S, x ∈ V

An Example

If we have n = 3, x1 . . . x3 equal to the sentence the dog laughs,
and y1 . . . y4 equal to the tag sequence D N V STOP, then

p(x1 . . . xn, y1 . . . yn+1)

= q(D|∗, ∗)× q(N|∗, D)× q(V|D, N)× q(STOP|N, V)
×e(the|D)× e(dog|N)× e(laughs|V)

I STOP is a special tag that terminates the sequence

I We take y0 = y−1 = *, where * is a special “padding” symbol

Why the Name?

p(x1 . . . xn, y1 . . . yn) = q(STOP|yn−1, yn)
n∏

j=1

q(yj | yj−2, yj−1)︸ ︷︷ ︸
Markov Chain

×
n∏

j=1

e(xj | yj)︸ ︷︷ ︸
xj’s are observed

Overview

I The Tagging Problem

I Generative models, and the noisy-channel model, for
supervised learning

I Hidden Markov Model (HMM) taggers

I Basic definitions
I Parameter estimation
I The Viterbi algorithm

Smoothed Estimation

q(Vt | DT, JJ) = λ1 ×
Count(Dt, JJ, Vt)

Count(Dt, JJ)

+λ2 ×
Count(JJ, Vt)

Count(JJ)

+λ3 ×
Count(Vt)

Count()

λ1 + λ2 + λ3 = 1, and for all i, λi ≥ 0

e(base | Vt) =
Count(Vt, base)

Count(Vt)

Dealing with Low-Frequency Words: An Example

Profits soared at Boeing Co. , easily topping forecasts on Wall
Street , as their CEO Alan Mulally announced first quarter results .

Dealing with Low-Frequency Words

A common method is as follows:

I Step 1: Split vocabulary into two sets

Frequent words = words occurring ≥ 5 times in training
Low frequency words = all other words

I Step 2: Map low frequency words into a small, finite set,
depending on prefixes, suffixes etc.

Dealing with Low-Frequency Words: An Example

[Bikel et. al 1999] (named-entity recognition)
Word class Example Intuition
twoDigitNum 90 Two digit year
fourDigitNum 1990 Four digit year
containsDigitAndAlpha A8956-67 Product code
containsDigitAndDash 09-96 Date
containsDigitAndSlash 11/9/89 Date
containsDigitAndComma 23,000.00 Monetary amount
containsDigitAndPeriod 1.00 Monetary amount, percentage
othernum 456789 Other number
allCaps BBN Organization
capPeriod M. Person name initial
firstWord first word of sentence no useful capitalization information
initCap Sally Capitalized word
lowercase can Uncapitalized word
other , Punctuation marks, all other words

Dealing with Low-Frequency Words: An Example
Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA

topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA

CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA

results/NA ./NA

⇓
firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA

lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA

their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA

quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
. . .

Overview

I The Tagging Problem

I Generative models, and the noisy-channel model, for
supervised learning

I Hidden Markov Model (HMM) taggers

I Basic definitions
I Parameter estimation
I The Viterbi algorithm

The Viterbi Algorithm

Problem: for an input x1 . . . xn, find

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

where the argmax is taken over all sequences y1 . . . yn+1 such
that yi ∈ S for i = 1 . . . n, and yn+1 = STOP.

We assume that p again takes the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi|yi)

Recall that we have assumed in this definition that y0 = y−1 = *,
and yn+1 = STOP.

Brute Force Search is Hopelessly Inefficient

Problem: for an input x1 . . . xn, find

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

where the argmax is taken over all sequences y1 . . . yn+1 such
that yi ∈ S for i = 1 . . . n, and yn+1 = STOP.

The Viterbi Algorithm
I Define n to be the length of the sentence
I Define Sk for k = −1 . . . n to be the set of possible tags at

position k:
S−1 = S0 = {∗}

Sk = S for k ∈ {1 . . . n}
I Define

r(y−1, y0, y1, . . . , yk) =
k∏

i=1

q(yi|yi−2, yi−1)
k∏

i=1

e(xi|yi)

I Define a dynamic programming table

π(k, u, v) = maximum probability of a tag sequence

ending in tags u, v at position k

that is,
π(k, u, v) = max〈y−1,y0,y1,...,yk〉:yk−1=u,yk=v r(y−1, y0, y1 . . . yk)

An Example

π(k, u, v) = maximum probability of a tag sequence

ending in tags u, v at position k

The man saw the dog with the telescope

A Recursive Definition

Base case:
π(0, *, *) = 1

Recursive definition:
For any k ∈ {1 . . . n}, for any u ∈ Sk−1 and v ∈ Sk:

π(k, u, v) = max
w∈Sk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

Justification for the Recursive Definition
For any k ∈ {1 . . . n}, for any u ∈ Sk−1 and v ∈ Sk:

π(k, u, v) = max
w∈Sk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

The man saw the dog with the telescope

The Viterbi Algorithm

Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).

Initialization: Set π(0, *, *) = 1

Definition: S−1 = S0 = {∗}, Sk = S for k ∈ {1 . . . n}

Algorithm:

I For k = 1 . . . n,

I For u ∈ Sk−1, v ∈ Sk,

π(k, u, v) = max
w∈Sk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

I Return maxu∈Sn−1,v∈Sn (π(n, u, v)× q(STOP|u, v))

The Viterbi Algorithm with Backpointers
Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).

Initialization: Set π(0, *, *) = 1

Definition: S−1 = S0 = {∗}, Sk = S for k ∈ {1 . . . n}
Algorithm:

I For k = 1 . . . n,

I For u ∈ Sk−1, v ∈ Sk,

π(k, u, v) = max
w∈Sk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

bp(k, u, v) = arg max
w∈Sk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

I Set (yn−1, yn) = argmax(u,v) (π(n, u, v)× q(STOP|u, v))

I For k = (n− 2) . . . 1, yk = bp(k + 2, yk+1, yk+2)

I Return the tag sequence y1 . . . yn

The Viterbi Algorithm: Running Time

I O(n|S|3) time to calculate q(s|u, v)× e(xk|s) for
all k, s, u, v.

I n|S|2 entries in π to be filled in.

I O(|S|) time to fill in one entry

I ⇒ O(n|S|3) time in total

Pros and Cons

I Hidden markov model taggers are very simple to
train (just need to compile counts from the
training corpus)

I Perform relatively well (over 90% performance on
named entity recognition)

I Main difficulty is modeling

e(word | tag)

can be very difficult if “words” are complex

