Lexicalized Probabilistic Context-Free Grammars

Michael Collins, Columbia University

Overview

- Lexicalization of a treebank
- Lexicalized probabilistic context-free grammars
- Parameter estimation in lexicalized probabilistic context-free grammars
- Accuracy of lexicalized probabilistic context-free grammars

Heads in Context-Free Rules

Add annotations specifying the "head" of each rule:

$$\begin{array}{cccc} \mathsf{S} & \Rightarrow & \mathsf{NP} & \mathsf{VP} \\ \mathsf{VP} & \Rightarrow & \mathsf{Vi} & \\ \mathsf{VP} & \Rightarrow & \mathsf{Vt} & \mathsf{NP} \\ \mathsf{VP} & \Rightarrow & \mathsf{VP} & \mathsf{PP} \\ \\ \mathsf{NP} & \Rightarrow & \mathsf{DT} & \mathsf{NN} \\ \\ \mathsf{NP} & \Rightarrow & \mathsf{NP} & \mathsf{PP} \\ \\ \\ \mathsf{PP} & \Rightarrow & \mathsf{IN} & \mathsf{NP} \end{array}$$

$$\begin{array}{cccc} \mathsf{Vi} & \Rightarrow & \mathsf{sleeps} \\ \mathsf{Vt} & \Rightarrow & \mathsf{saw} \\ \\ \mathsf{NN} & \Rightarrow & \mathsf{man} \\ \\ \mathsf{NN} & \Rightarrow & \mathsf{woman} \\ \\ \\ \mathsf{NN} & \Rightarrow & \mathsf{telescope} \\ \\ \\ \mathsf{DT} & \Rightarrow & \mathsf{the} \\ \\ \\ \\ \mathsf{IN} & \Rightarrow & \mathsf{with} \\ \\ \\ \\ \mathsf{IN} & \Rightarrow & \mathsf{in} \end{array}$$

More about Heads

 Each context-free rule has one "special" child that is the head of the rule. e.g.,

S	\Rightarrow	NP	VP		(VP is the head)
VP	\Rightarrow	Vt	NP		(Vt is the head)
NP	\Rightarrow	DT	NN	NN	(NN is the head)

- A core idea in syntax (e.g., see X-bar Theory, Head-Driven Phrase Structure Grammar)
- Some intuitions:
 - The central sub-constituent of each rule.
 - The semantic predicate in each rule.

Rules which Recover Heads: An Example for NPs

If the rule contains NN, NNS, or NNP: Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,

Rules which Recover Heads: An Example for VPs

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

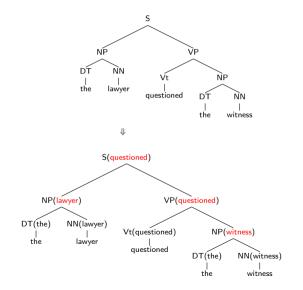
Else If the rule contains an VP: Choose the leftmost VP

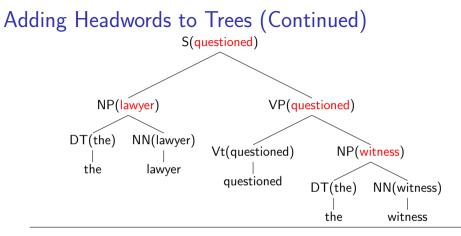
Else Choose the leftmost child

e.g.,

$$\begin{array}{rccc} \mathsf{VP} & \Rightarrow & \mathsf{Vt} & \mathsf{NP} \\ \mathsf{VP} & \Rightarrow & \mathsf{VP} & \mathsf{PP} \end{array}$$

Adding Headwords to Trees





- A constituent receives its headword from its head child.

(S receives headword from VP) (VP receives headword from Vt) (NP receives headword from NN)

Overview

- Lexicalization of a treebank
- Lexicalized probabilistic context-free grammars
- Parameter estimation in lexicalized probabilistic context-free grammars
- Accuracy of lexicalized probabilistic context-free grammars

Chomsky Normal Form

A context free grammar $G=(N,\Sigma,R,S)$ in Chomsky Normal Form is as follows

- \blacktriangleright N is a set of non-terminal symbols
- $\blacktriangleright\ \Sigma$ is a set of terminal symbols
- R is a set of rules which take one of two forms:
 - $X \to Y_1 Y_2$ for $X \in N$, and $Y_1, Y_2 \in N$
 - $X \to Y$ for $X \in N$, and $Y \in \Sigma$
- $\blacktriangleright \ S \in N$ is a distinguished start symbol

We can find the highest scoring parse under a PCFG in this form, in ${\cal O}(n^3|N|^3)$ time where n is the length of the string being parsed.

Lexicalized Context-Free Grammars in Chomsky Normal Form

- \blacktriangleright N is a set of non-terminal symbols
- $\blacktriangleright\ \Sigma$ is a set of terminal symbols
- \blacktriangleright R is a set of rules which take one of three forms:
 - $X(h) \rightarrow_1 Y_1(h) Y_2(w)$ for $X \in N$, and $Y_1, Y_2 \in N$, and $h, w \in \Sigma$
 - $X(h) \rightarrow_2 Y_1(w) Y_2(h)$ for $X \in N$, and $Y_1, Y_2 \in N$, and $h, w \in \Sigma$
 - $X(h) \rightarrow h$ for $X \in N$, and $h \in \Sigma$
- $\blacktriangleright \ S \in N \text{ is a distinguished start symbol}$

An Example

S(saw)	\rightarrow_2	NP(man)	VP(saw)
VP(saw)	\rightarrow_1	Vt(saw)	NP(dog)
NP(man)	\rightarrow_2	DT(the)	NN(man)
NP(dog)	\rightarrow_2	DT(the)	NN(dog)
Vt(saw)	\rightarrow	saw	
DT(the)	\rightarrow	the	
NN(man)	\rightarrow	man	
NN(dog)	\rightarrow	dog	

Parameters in a Lexicalized PCFG

An example parameter in a PCFG:

 $q(\mathsf{S} \to \mathsf{NP} \mathsf{VP})$

An example parameter in a Lexicalized PCFG:

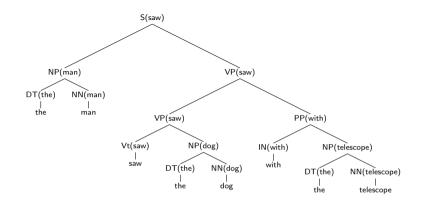
 $q(\mathsf{S(saw)} \rightarrow_2 \mathsf{NP(man) VP(saw)})$

Parsing with Lexicalized CFGs

- ► The new form of grammar looks just like a Chomsky normal form CFG, but with potentially O(|∑|² × |N|³) possible rules.
- ► Naively, parsing an n word sentence using the dynamic programming algorithm will take O(n³|Σ|²|N|³) time. But |Σ| can be huge!!
- Crucial observation: at most O(n² × |N|³) rules can be applicable to a given sentence w₁, w₂,...w_n of length n. This is because any rules which contain a lexical item that is not one of w₁...w_n, can be safely discarded.
- The result: we can parse in $O(n^5|N|^3)$ time.

Overview

- Lexicalization of a treebank
- Lexicalized probabilistic context-free grammars
- Parameter estimation in lexicalized probabilistic context-free grammars
- Accuracy of lexicalized probabilistic context-free grammars



$$\begin{split} \mathsf{p}(\mathsf{t}) &= q(\mathsf{S}(\mathsf{saw}) \rightarrow_2 \mathsf{NP}(\mathsf{man}) \mathsf{VP}(\mathsf{saw})) \\ &\times q(\mathsf{NP}(\mathsf{man}) \rightarrow_2 \mathsf{DT}(\mathsf{the}) \mathsf{NN}(\mathsf{man})) \\ &\times q(\mathsf{VP}(\mathsf{saw}) \rightarrow_1 \mathsf{VP}(\mathsf{saw}) \mathsf{PP}(\mathsf{with})) \\ &\times q(\mathsf{VP}(\mathsf{saw}) \rightarrow_1 \mathsf{Vt}(\mathsf{saw}) \mathsf{NP}(\mathsf{dog})) \\ &\times q(\mathsf{PP}(\mathsf{with}) \rightarrow_1 \mathsf{IN}(\mathsf{with}) \mathsf{NP}(\mathsf{telescope})) \\ &\times \ldots \end{split}$$

A Model from Charniak (1997)

> An example parameter in a Lexicalized PCFG:

 $q(\mathsf{S(saw)} \rightarrow_2 \mathsf{NP(man) VP(saw)})$

 First step: decompose this parameter into a product of two parameters

$$q(\mathsf{S}(\mathsf{saw}) \rightarrow_2 \mathsf{NP}(\mathsf{man}) \mathsf{VP}(\mathsf{saw})) = q(\mathsf{S} \rightarrow_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \mathsf{saw}) \times q(\mathsf{man}|\mathsf{S} \rightarrow_2 \mathsf{NP} \mathsf{VP}, \mathsf{saw})$$

A Model from Charniak (1997) (Continued)

$$q(\mathsf{S}(\mathsf{saw}) \rightarrow_2 \mathsf{NP}(\mathsf{man}) \mathsf{VP}(\mathsf{saw})) \\ = q(\mathsf{S} \rightarrow_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \mathsf{saw}) \times q(\mathsf{man}|\mathsf{S} \rightarrow_2 \mathsf{NP} \mathsf{VP}, \mathsf{saw})$$

 Second step: use smoothed estimation for the two parameter estimates

$$\begin{array}{rl} q(\mathsf{S} \rightarrow_2 \mathsf{NP} \mathsf{VP} | \mathsf{S}, \mathsf{saw}) \\ = & \lambda_1 \times q_{ML}(\mathsf{S} \rightarrow_2 \mathsf{NP} \mathsf{VP} | \mathsf{S}, \mathsf{saw}) + \lambda_2 \times q_{ML}(\mathsf{S} \rightarrow_2 \mathsf{NP} \mathsf{VP} | \mathsf{S}) \end{array}$$

A Model from Charniak (1997) (Continued)

 $q(\mathsf{man}|\mathsf{S} \rightarrow_2 \mathsf{NP} \mathsf{VP}, \mathsf{saw})$

$$q(\mathsf{S}(\mathsf{saw}) \rightarrow_2 \mathsf{NP}(\mathsf{man}) \mathsf{VP}(\mathsf{saw})) \\ = q(\mathsf{S} \rightarrow_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \mathsf{saw}) \times q(\mathsf{man}|\mathsf{S} \rightarrow_2 \mathsf{NP} \mathsf{VP}, \mathsf{saw})$$

 Second step: use smoothed estimation for the two parameter estimates

 $q(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \mathsf{saw}) = \lambda_1 \times q_{ML}(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \mathsf{saw}) + \lambda_2 \times q_{ML}(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S})$

 $= \lambda_3 \times q_{ML}(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}, \mathsf{saw}) + \lambda_4 \times q_{ML}(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}) \\ + \lambda_5 \times q_{ML}(\mathsf{man}|\mathsf{NP})$

▶ Need to deal with rules with more than two children, e.g.,

 $VP(told) \rightarrow V(told) NP(him) PP(on) SBAR(that)$

Need to deal with rules with more than two children, e.g.,

 $\mathsf{VP}(\mathsf{told}) \to \mathsf{V}(\mathsf{told}) \; \mathsf{NP}(\mathsf{him}) \; \mathsf{PP}(\mathsf{on}) \; \mathsf{SBAR}(\mathsf{that})$

▶ Need to incorporate parts of speech (useful in smoothing) VP-V(told) \rightarrow V(told) NP-PRP(him) PP-IN(on) SBAR-COMP(that)

Need to deal with rules with more than two children, e.g.,

 $\mathsf{VP}(\mathsf{told}) \to \mathsf{V}(\mathsf{told}) \; \mathsf{NP}(\mathsf{him}) \; \mathsf{PP}(\mathsf{on}) \; \mathsf{SBAR}(\mathsf{that})$

- ▶ Need to incorporate parts of speech (useful in smoothing) VP-V(told) \rightarrow V(told) NP-PRP(him) PP-IN(on) SBAR-COMP(that)
- Need to encode preferences for close attachment John was believed to have been shot by Bill

Need to deal with rules with more than two children, e.g.,

 $\mathsf{VP}(\mathsf{told}) \to \mathsf{V}(\mathsf{told}) \; \mathsf{NP}(\mathsf{him}) \; \mathsf{PP}(\mathsf{on}) \; \mathsf{SBAR}(\mathsf{that})$

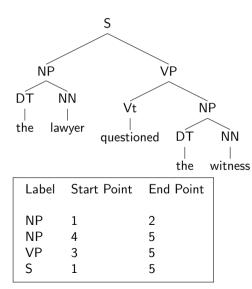
- ▶ Need to incorporate parts of speech (useful in smoothing) VP-V(told) \rightarrow V(told) NP-PRP(him) PP-IN(on) SBAR-COMP(that)
- Need to encode preferences for close attachment John was believed to have been shot by Bill
- Further reading:

Michael Collins. 2003. Head-Driven Statistical Models for Natural Language Parsing. In Computational Linguistics.

Overview

- Lexicalization of a treebank
- Lexicalized probabilistic context-free grammars
- Parameter estimation in lexicalized probabilistic context-free grammars
- Accuracy of lexicalized probabilistic context-free grammars

Evaluation: Representing Trees as Constituents



Precision and Recall

Label	Start Point	End Point		
	0101110000		Label	Start Point
NP NP PP NP	1 4 4 6 7	2 5 8 8 8	NP NP PP NP VP	1 4 6 7 3
VP	3	8	c	1
S	1	8	3	1

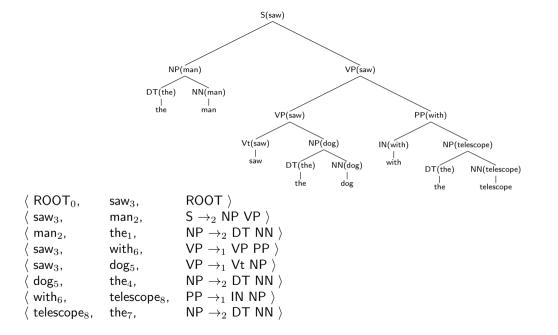
End Point

- G = number of constituents in gold standard = 7
- P = number in parse output = 6
- C = number correct = 6

$$\label{eq:Recall} \mbox{Recall} = 100\% \times \frac{C}{G} = 100\% \times \frac{6}{7} \qquad \mbox{Precision} = 100\% \times \frac{C}{P} = 100\% \times \frac{6}{6}$$

Results

- Training data: 40,000 sentences from the Penn Wall Street Journal treebank. Testing: around 2,400 sentences from the Penn Wall Street Journal treebank.
- Results for a PCFG: 70.6% Recall, 74.8% Precision
- Magerman (1994): 84.0% Recall, 84.3% Precision
- Results for a lexicalized PCFG: 88.1% recall, 88.3% precision (from Collins (1997, 2003))
- More recent results: 90.7% Recall/91.4% Precision (Carreras et al., 2008); 91.7% Recall, 92.0% Precision (Petrov 2010); 91.2% Recall, 91.8% Precision (Charniak and Johnson, 2005)



Dependency Accuracies

- All parses for a sentence with n words have n dependencies Report a single figure, dependency accuracy
- ▶ Results from Collins, 2003: 88.3% dependency accuracy
- Can calculate precision/recall on particular dependency types
 e.g., look at all subject/verb dependencies ⇒
 all dependencies with label S →₂ NP VP

Recall = number of subject/verb dependencies correct number of subject/verb dependencies in gold standard

Precision =

number of subject/verb dependencies correct number of subject/verb dependencies in parser's output

Strengths and Weaknesses of Modern Parsers

(Numbers taken from Collins (2003))

- ► Subject-verb pairs: over 95% recall and precision
- ▶ Object-verb pairs: over 92% recall and precision
- \blacktriangleright Other arguments to verbs: \approx 93% recall and precision
- \blacktriangleright Non-recursive NP boundaries: \approx 93% recall and precision
- \blacktriangleright PP attachments: \approx 82% recall and precision
- \blacktriangleright Coordination ambiguities: \approx 61% recall and precision

- Key weakness of PCFGs: lack of sensitivity to lexical information
- Lexicalized PCFGs:
 - Lexicalize a treebank using head rules
 - Estimate the parameters of a lexicalized PCFG using smoothed estimation
- Accuracy of lexicalized PCFGs: around 88% in recovering constituents or depenencies