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Overview

I Probabilistic Context-Free Grammars (PCFGs)

I The CKY Algorithm for parsing with PCFGs



A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0
VP ⇒ Vi 0.4
VP ⇒ Vt NP 0.4
VP ⇒ VP PP 0.2
NP ⇒ DT NN 0.3
NP ⇒ NP PP 0.7
PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0
Vt ⇒ saw 1.0
NN ⇒ man 0.7
NN ⇒ woman 0.2
NN ⇒ telescope 0.1
DT ⇒ the 1.0
IN ⇒ with 0.5
IN ⇒ in 0.5

I Probability of a tree t with rules

α1 → β1, α2 → β2, . . . , αn → βn

is p(t) =
∏n

i=1 q(αi → βi) where q(α→ β) is the probability
for rule α→ β.



DERIVATION RULES USED PROBABILITY
S

S → NP VP
1.0

NP VP
NP → DT NN

0.3

DT NN VP
DT → the

1.0

the NN VP
NN → dog

0.1

the dog VP
VP → Vi

0.4

the dog Vi
Vi → laughs

0.5

the dog laughs
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Properties of PCFGs

I Assigns a probability to each left-most derivation, or parse-tree,
allowed by the underlying CFG

I Say we have a sentence s, set of derivations for that sentence is
T (s). Then a PCFG assigns a probability p(t) to each member of
T (s). i.e., we now have a ranking in order of probability.

I The most likely parse tree for a sentence s is

arg max
t∈T (s)

p(t)
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Data for Parsing Experiments: Treebanks

I Penn WSJ Treebank = 50,000 sentences with associated trees

I Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:
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Canadian Utilities had 1988 revenue of C$ 1.16 billion ,
mainly from its natural gas and electric utility businesses in
Alberta , where the company serves about 800,000
customers .



Deriving a PCFG from a Treebank

I Given a set of example trees (a treebank), the underlying
CFG can simply be all rules seen in the corpus

I Maximum Likelihood estimates:

qML(α→ β) =
Count(α→ β)

Count(α)

where the counts are taken from a training set of example
trees.

I If the training data is generated by a PCFG, then as the
training data size goes to infinity, the maximum-likelihood
PCFG will converge to the same distribution as the “true”
PCFG.



PCFGs

Booth and Thompson (1973) showed that a CFG with rule
probabilities correctly defines a distribution over the set of
derivations provided that:

1. The rule probabilities define conditional distributions over the
different ways of rewriting each non-terminal.

2. A technical condition on the rule probabilities ensuring that
the probability of the derivation terminating in a finite
number of steps is 1. (This condition is not really a practical
concern.)



Parsing with a PCFG

I Given a PCFG and a sentence s, define T (s) to be the set of
trees with s as the yield.

I Given a PCFG and a sentence s, how do we find

arg max
t∈T (s)

p(t)



Chomsky Normal Form

A context free grammar G = (N,Σ, R, S) in Chomsky
Normal Form is as follows

I N is a set of non-terminal symbols

I Σ is a set of terminal symbols

I R is a set of rules which take one of two forms:
I X → Y1Y2 for X ∈ N , and Y1, Y2 ∈ N
I X → Y for X ∈ N , and Y ∈ Σ

I S ∈ N is a distinguished start symbol



A Dynamic Programming Algorithm
I Given a PCFG and a sentence s, how do we find

max
t∈T (s)

p(t)

I Notation:

n = number of words in the sentence

wi = i’th word in the sentence

N = the set of non-terminals in the grammar

S = the start symbol in the grammar

I Define a dynamic programming table

π[i, j,X] = maximum probability of a constituent with non-terminal X

spanning words i . . . j inclusive

I Our goal is to calculate maxt∈T (s) p(t) = π[1, n, S]



An Example

the dog saw the man with the telescope



A Dynamic Programming Algorithm

I Base case definition: for all i = 1 . . . n, for X ∈ N

π[i, i,X] = q(X → wi)

(note: define q(X → wi) = 0 if X → wi is not in the
grammar)

I Recursive definition: for all i = 1 . . . n, j = (i+ 1) . . . n,
X ∈ N ,

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z)× π(i, s, Y )× π(s+ 1, j, Z))



An Example

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z)× π(i, s, Y )× π(s+ 1, j, Z))

the dog saw the man with the telescope



The Full Dynamic Programming Algorithm
Input: a sentence s = x1 . . . xn, a PCFG G = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{
q(X → xi) if X → xi ∈ R
0 otherwise

Algorithm:

I For l = 1 . . . (n− 1)

I For i = 1 . . . (n− l)
I Set j = i+ l
I For all X ∈ N , calculate

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z)× π(i, s, Y )× π(s+ 1, j, Z))

and

bp(i, j,X) = arg max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z)× π(i, s, Y )× π(s+ 1, j, Z))

Output: Return π(1, n, S) = maxt∈T (s) p(t), and backpointers bp

which allow recovery of arg maxt∈T (s) p(t).



A Dynamic Programming Algorithm for the Sum
I Given a PCFG and a sentence s, how do we find∑

t∈T (s)

p(t)

I Notation:

n = number of words in the sentence

wi = i’th word in the sentence

N = the set of non-terminals in the grammar

S = the start symbol in the grammar

I Define a dynamic programming table

π[i, j,X] = sum of probabilities for constituent with non-terminal X

spanning words i . . . j inclusive

I Our goal is to calculate
∑

t∈T (s) p(t) = π[1, n, S]



Summary

I PCFGs augments CFGs by including a probability for each
rule in the grammar.

I The probability for a parse tree is the product of probabilities
for the rules in the tree

I To build a PCFG-parsed parser:

1. Learn a PCFG from a treebank
2. Given a test data sentence, use the CKY algorithm to

compute the highest probability tree for the sentence under
the PCFG


