Probabilistic Context-Free Grammars

Michael Collins, Columbia University

Overview

- Probabilistic Context-Free Grammars (PCFGs)
- ► The CKY Algorithm for parsing with PCFGs

A Probabilistic Context-Free Grammar (PCFG)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

• Probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$$

is $p(t) = \prod_{i=1}^n q(\alpha_i \to \beta_i)$ where $q(\alpha \to \beta)$ is the probability
for rule $\alpha \to \beta$.

DERIVATION RULES USED PROBABILITY S

DERIVATION	RULES USED	PROBABILITY
S	$S\toNP\;VP$	1.0
NP VP		

DERIVATION	RULES USED	PROBABILITY
S	S o NP VP	1.0
NP VP	$NP \rightarrow DT NN$	0.3
DT NN VP		

DERIVATION	RULES USED	PROBABILITY
S	S o NP VP	1.0
NP VP	$NP \rightarrow DT NN$	0.3
DT NN VP	$DT \rightarrow the$	1.0
the NN VP		

DERIVATION	RULES USED	PROBABILITY
S	$S\toNP\;VP$	1.0
NP VP	$NP \rightarrow DT NN$	0.3
DT NN VP	$DT \rightarrow the$	1.0
the NN VP	$NN \rightarrow dog$	0.1
the dog VP		

DERIVATION	RULES USED	PROBABILITY
S	$S \to NP \; VP$	1.0
NP VP	$NP \rightarrow DT NN$	0.3
DT NN VP	$DT \rightarrow the$	1.0
the NN VP	$NN \rightarrow dog$	0.1
the dog VP	$VP \rightarrow Vi$	0.4
the dog Vi	••• , ••	

DERIVATION	RULES USED	PROBABILITY
S	$S\toNP\;VP$	1.0
NP VP	NP o DT NN	0.3
DT NN VP	$DT \rightarrow the$	1.0
the NN VP	$D1 \rightarrow the$	0.1
the dog VP	$NN \rightarrow dog$	0.4
the dog Vi	$V_{\Gamma} \rightarrow V_{I}$	0.5
the dog laughs	vi — laugiis	

Properties of PCFGs

 Assigns a probability to each *left-most derivation*, or parse-tree, allowed by the underlying CFG

Properties of PCFGs

- Assigns a probability to each *left-most derivation*, or parse-tree, allowed by the underlying CFG
- ► Say we have a sentence s, set of derivations for that sentence is *T*(s). Then a PCFG assigns a probability *p*(*t*) to each member of *T*(s). i.e., we now have a ranking in order of probability.

Properties of PCFGs

- Assigns a probability to each *left-most derivation*, or parse-tree, allowed by the underlying CFG
- ► Say we have a sentence s, set of derivations for that sentence is *T*(s). Then a PCFG assigns a probability *p*(*t*) to each member of *T*(s). i.e., we now have a ranking in order of probability.
- ▶ The most likely parse tree for a sentence *s* is

 $\arg\max_{t\in\mathcal{T}(s)}p(t)$

Data for Parsing Experiments: Treebanks

- ▶ Penn WSJ Treebank = 50,000 sentences with associated trees
- ▶ Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Deriving a PCFG from a Treebank

- Given a set of example trees (a treebank), the underlying CFG can simply be all rules seen in the corpus
- Maximum Likelihood estimates:

$$q_{ML}(\alpha \to \beta) = \frac{\mathsf{Count}(\alpha \to \beta)}{\mathsf{Count}(\alpha)}$$

where the counts are taken from a training set of example trees.

If the training data is generated by a PCFG, then as the training data size goes to infinity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

PCFGs

Booth and Thompson (1973) showed that a CFG with rule probabilities correctly defines a distribution over the set of derivations provided that:

- 1. The rule probabilities define conditional distributions over the different ways of rewriting each non-terminal.
- 2. A technical condition on the rule probabilities ensuring that the probability of the derivation terminating in a finite number of steps is 1. (This condition is not really a practical concern.)

- Given a PCFG and a sentence s, define T(s) to be the set of trees with s as the yield.
- Given a PCFG and a sentence s, how do we find

 $\arg \max_{t \in \mathcal{T}(s)} p(t)$

Chomsky Normal Form

A context free grammar $G=(N,\Sigma,R,S)$ in Chomsky Normal Form is as follows

- \blacktriangleright N is a set of non-terminal symbols
- \blacktriangleright Σ is a set of terminal symbols
- \blacktriangleright R is a set of rules which take one of two forms:
 - $\blacktriangleright \ X \to Y_1Y_2 \text{ for } X \in N \text{, and } Y_1, Y_2 \in N$
 - $X \to Y$ for $X \in N$, and $Y \in \Sigma$
- $\blacktriangleright\ S \in N$ is a distinguished start symbol

A Dynamic Programming Algorithm

• Given a PCFG and a sentence *s*, how do we find

 $\max_{t\in\mathcal{T}(s)}p(t)$

Notation:

 $n = \operatorname{number}$ of words in the sentence

 $w_i = i$ 'th word in the sentence

 ${\cal N}={\rm the}\ {\rm set}\ {\rm of}\ {\rm non-terminals}\ {\rm in}\ {\rm the}\ {\rm grammar}$

S = the start symbol in the grammar

• Define a dynamic programming table $\pi[i, j, X] = \max$ maximum probability of a constituent with non-terminal X spanning words $i \dots j$ inclusive

• Our goal is to calculate
$$\max_{t \in \mathcal{T}(s)} p(t) = \pi[1, n, S]$$

An Example

the dog saw the man with the telescope

A Dynamic Programming Algorithm

▶ Base case definition: for all $i = 1 \dots n$, for $X \in N$

$$\pi[i, i, X] = q(X \to w_i)$$

(note: define $q(X \rightarrow w_i) = 0$ if $X \rightarrow w_i$ is not in the grammar)

• Recursive definition: for all $i = 1 \dots n$, $j = (i + 1) \dots n$, $X \in N$,

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

An Example

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} \left(q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z) \right)$$

the dog saw the man with the telescope

The Full Dynamic Programming Algorithm

Input: a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$. Initialization:

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i,i,X) \ = \ \left\{ \begin{array}{ll} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{array} \right.$$

Algorithm:

► For
$$l = 1 \dots (n - 1)$$

► For $i = 1 \dots (n - l)$
► Set $j = i + l$
► For all $X \in N$, calculate
 $\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))$
and

and

$$bp(i, j, X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} \left(q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z) \right)$$

A Dynamic Programming Algorithm for the Sum

• Given a PCFG and a sentence *s*, how do we find

$$\sum_{t \in \mathcal{T}(s)} p(t)$$

Notation:

 $n = \operatorname{number}$ of words in the sentence

 $w_i = i$ 'th word in the sentence

N = the set of non-terminals in the grammar

S = the start symbol in the grammar

Define a dynamic programming table

 $\pi[i, j, X] = \text{sum of probabilities for constituent with non-terminal } X$ spanning words $i \dots j$ inclusive

• Our goal is to calculate
$$\sum_{t \in \mathcal{T}(s)} p(t) = \pi[1, n, S]$$

Summary

- PCFGs augments CFGs by including a probability for each rule in the grammar.
- The probability for a parse tree is the product of probabilities for the rules in the tree
- ► To build a PCFG-parsed parser:
 - 1. Learn a PCFG from a treebank
 - Given a test data sentence, use the CKY algorithm to compute the highest probability tree for the sentence under the PCFG