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Overview

» Probabilistic Context-Free Grammars (PCFGs)

» The CKY Algorithm for parsing with PCFGs



A Probabilistic Context-Free Grammar (PCFG)

S ~ NP VP 10 Vi = sleeps 1.0

. Vt = saw 1.0
VP = Vi 0.4 NN = man 0.7
VP = Vt NP 0.4 NN —  woman 0'2
VP = VP PP 0.2 NN = telescope 0-1
NP = DT NN |03 ST —tre P —
NP = NP PP 0.7 N = wih 0'5
PP = P NP 1.0 IN — in 0.5
» Probability of a tree ¢ with rules

(e %] —>61,062 —>ﬁ2,...,05n — 6n

is p(t) = [, ¢(a; — B;) where ¢(aw — ) is the probability
for rule a — S.
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DERIVATION
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Properties of PCFGs

> Assigns a probability to each left-most derivation, or parse-tree,
allowed by the underlying CFG

» Say we have a sentence s, set of derivations for that sentence is
T (s). Then a PCFG assigns a probability p(¢) to each member of
T (s). i.e., we now have a ranking in order of probability.

» The most likely parse tree for a sentence s is

arg max p(t)
teT (s

T(s)



Data for Parsing Experiments: Treebanks
» Penn WSJ Treebank = 50,000 sentences with associated trees
» Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:




Deriving a PCFG from a Treebank

» Given a set of example trees (a treebank), the underlying
CFG can simply be all rules seen in the corpus
» Maximum Likelihood estimates:

Count(a — )
Count(a)

qur(a — B) =

where the counts are taken from a training set of example
trees.

» If the training data is generated by a PCFG, then as the
training data size goes to infinity, the maximum-likelihood

PCFG will converge to the same distribution as the “true”
PCFG.



PCFGs

Booth and Thompson (1973) showed that a CFG with rule
probabilities correctly defines a distribution over the set of
derivations provided that:

1. The rule probabilities define conditional distributions over the
different ways of rewriting each non-terminal.

2. A technical condition on the rule probabilities ensuring that
the probability of the derivation terminating in a finite
number of steps is 1. (This condition is not really a practical
concern.)



Parsing with a PCFG

» Given a PCFG and a sentence s, define T (s) to be the set of
trees with s as the yield.

» Given a PCFG and a sentence s, how do we find

arg trenﬁg)p(t)



Chomsky Normal Form

A context free grammar G = (N, X, R, S) in Chomsky
Normal Form is as follows

» N is a set of non-terminal symbols

» Y is a set of terminal symbols

» R is a set of rules which take one of two forms:

» X - YYofor X € N,and Y7,Y5 € N
» X > Y forXeN,andY € ¥

» S € N is a distinguished start symbol



A Dynamic Programming Algorithm
» Given a PCFG and a sentence s, how do we find

ma t
Jmax p(t)

» Notation:
n = number of words in the sentence
w; = 1'th word in the sentence
N = the set of non-terminals in the grammar

S = the start symbol in the grammar

» Define a dynamic programming table

7[i, 7, X] = maximum probability of a constituent with non-terminal X

spanning words 7 ... j inclusive

» Our goal is to calculate maxc7(s) p(t) = 7[1,n, 5]



An Example

the dog saw the man with the telescope



A Dynamic Programming Algorithm

» Base case definition: foralli=1...n, for X € N

mliyi, X| = (X — w;)

(note: define ¢(X — w;) = 0 if X — w; is not in the
grammar)

» Recursive definition: foralli=1...n, j=(i+1)...n,
X € N,

m(i, g, X) = max (q(X = YZ)xn(i,s,Y) x7(s + 1,5, 7))

sefio(j—1)}



An Example

w6, 5, X) = max (¢(X =YZ)xn(isY)xn(s+1,5,2))

sefi...(j—1)}
the dog saw the man with the telescope



The Full Dynamic Programming Algorithm
Input: a sentence s =z;1...2,, a PCFG G = (N, X, S, R, q).

Initialization:
Forallie {1...n}, forall X € N,

I P
Algorithm:
» Fori=1...(n—1)
» Fori=1...(n—1)

» Set j=i+1
» For all X € N, calculate
m(i,5,X)= max (¢(X =YZ)xn(i,s,Y) xw(s+1,5,2))
XY ZER,
selin.(G-1)}
and
bp(i,j,X) =arg max (¢(X =YZ)xn(i,s,Y)xn(s+1,4,72))

XY ZER,

sefi. (i—1)}



A Dynamic Programming Algorithm for the Sum
» Given a PCFG and a sentence s, how do we find
> p(t)
teT(s)
» Notation:
n = number of words in the sentence
w; = 1'th word in the sentence
N = the set of non-terminals in the grammar

S = the start symbol in the grammar

» Define a dynamic programming table

7[i, 7, X] = sum of probabilities for constituent with non-terminal X

spanning words i ... j inclusive

» OQur goal is to calculate >, .~ .\ p(t) = 7[1, n, S]



Summary

» PCFGs augments CFGs by including a probability for each
rule in the grammar.

» The probability for a parse tree is the product of probabilities
for the rules in the tree

» To build a PCFG-parsed parser:

1. Learn a PCFG from a treebank
2. Given a test data sentence, use the CKY algorithm to
compute the highest probability tree for the sentence under

the PCFG



