Log-Linear Models

Michael Collins, Columbia University

The Language Modeling Problem

- w_{i} is the i 'th word in a document
- Estimate a distribution $p\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right)$ given previous "history" w_{1}, \ldots, w_{i-1}.
- E.g., $w_{1}, \ldots, w_{i-1}=$

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

Trigram Models

- Estimate a distribution $p\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right)$ given previous
"history" $w_{1}, \ldots, w_{i-1}=$
Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical
- Trigram estimates:

$$
\begin{aligned}
q\left(\operatorname{model} \mid w_{1}, \ldots w_{i-1}\right)= & \lambda_{1} q_{M L}\left(\operatorname{model} \mid w_{i-2}=\text { any }, w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{2} q_{M L}\left(\text { model } \mid w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{3} q_{M L}(\text { model })
\end{aligned}
$$

$$
\text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1, q_{M L}(y \mid x)=\frac{\operatorname{Count}(x, y)}{\operatorname{Count}(x)}
$$

Trigram Models

$$
\begin{aligned}
q\left(\operatorname{model} \mid w_{1}, \ldots w_{i-1}\right)= & \lambda_{1} q_{M L}\left(\text { model } \mid w_{i-2}=\text { any }, w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{2} q_{M L}\left(\text { model } \mid w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{3} q_{M L}(\text { model })
\end{aligned}
$$

- Makes use of only bigram, trigram, unigram estimates
- Many other "features" of w_{1}, \ldots, w_{i-1} may be useful, e.g.,:
$q_{M L}\left(\right.$ model $\mid \quad w_{i-2}=$ any $)$
$q_{M L}$ (model | w_{i-1} is an adjective)
$q_{M L}\left(\right.$ model $\mid w_{i-1}$ ends in "ical")
$q_{M L}($ model $\quad \mid \quad$ author $=$ Chomsky $)$
$q_{M L}\left(\right.$ model | "model" does not occur somewhere in $\left.w_{1}, \ldots w_{i-1}\right)$
$q_{M L}\left(\right.$ model | "grammatical" occurs somewhere in $\left.w_{1}, \ldots w_{i-1}\right)$

A Naive Approach

$$
\begin{aligned}
& q\left(\text { model } \mid w_{1}, \ldots w_{i-1}\right)= \\
& \lambda_{1} q_{M L}\left(\text { model } \mid w_{i-2}=\text { any }, w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{2} q_{M L}\left(\text { model } \mid w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{3} q_{M L}(\text { model })+ \\
& \lambda_{4} q_{M L}\left(\text { model } \mid w_{i-2}=\text { any }\right)+ \\
& \lambda_{5} q_{M L}\left(\text { model } \mid w_{i-1} \text { is an adjective }\right)+ \\
& \lambda_{6} q_{M L}\left(\text { model } \mid w_{i-1} \text { ends in "ical" }\right)+ \\
& \lambda_{7} q_{M L}(\text { model } \mid \text { author }=\text { Chomsky })+ \\
& \lambda_{8} q_{M L}\left(\text { model } \mid \text { "model" does not occur somewhere in } w_{1}, \ldots w_{i-1}\right)+ \\
& \lambda_{9} q_{M L}\left(\text { model } \mid \text { "grammatical" occurs somewhere in } w_{1}, \ldots w_{i-1}\right)
\end{aligned}
$$

This quickly becomes very unwieldy...

A Second Example: Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/ N on/P Wall/N Street/ N ,/, as/P their/POSS CEO/N Alan/N Mulally/ N announced/ V first/ADJ quarter/ N results/ N ./.

N	$=$ Noun
V	$=$ Verb
P	$=$ Preposition
Adv	$=$ Adverb
Adj	$=$ Adjective

A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- There are many possible tags in the position ??
$\left\{N N, N N S, V t, V_{i}\right.$, IN, DT, ... $\}$
- The task: model the distribution

$$
p\left(t_{i} \mid t_{1}, \ldots, t_{i-1}, w_{1} \ldots w_{n}\right)
$$

where t_{i} is the i 'th tag in the sequence, w_{i} is the i 'th word

A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- The task: model the distribution

$$
p\left(t_{i} \mid t_{1}, \ldots, t_{i-1}, w_{1} \ldots w_{n}\right)
$$

where t_{i} is the i 'th tag in the sequence, w_{i} is the i 'th word

- Again: many "features" of $t_{1}, \ldots, t_{i-1}, w_{1} \ldots w_{n}$ may be relevant

$$
\begin{array}{l|l}
q_{M L}(\mathrm{NN} & \left.w_{i}=\text { base }\right) \\
q_{M L}(\mathrm{NN} & \left.t_{i-1} \text { is } \mathrm{JJ}\right) \\
q_{M L}(\mathrm{NN} & \left.w_{i} \text { ends in "e" }\right) \\
q_{M L}(\mathrm{NN} & w_{i} \text { ends in "se") } \\
q_{M L}(\mathrm{NN} & w_{i-1} \text { is "important") } \\
q_{M L}(\mathrm{NN} & w_{i+1} \text { is "from") }
\end{array}
$$

Overview

- Log-linear models
- The maximum-entropy property
- Smoothing, feature selection etc. in log-linear models

The General Problem

- We have some input domain \mathcal{X}
- Have a finite label set \mathcal{Y}
- Aim is to provide a conditional probability $p(y \mid x)$ for any x, y where $x \in \mathcal{X}, y \in \mathcal{Y}$

Language Modeling

- x is a "history" $w_{1}, w_{2}, \ldots w_{i-1}$, e.g.,

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical

- y is an "outcome" w_{i}

Feature Vector Representations

- Aim is to provide a conditional probability $p(y \mid x)$ for "decision" y given "history" x
- A feature is a function $f_{k}(x, y) \in \mathbb{R}$ (Often binary features or indicator functions

$$
f(x, y) \in\{0,1\}) .
$$

- Say we have m features f_{k} for $k=1 \ldots m$
\Rightarrow A feature vector $f(x, y) \in \mathbb{R}^{m}$ for any x, y

Language Modeling

- x is a "history" $w_{1}, w_{2}, \ldots w_{i-1}$, e.g.,

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English".
It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical

- y is an "outcome" w_{i}
- Example features:

$$
\begin{aligned}
& f_{1}(x, y)= \begin{cases}1 & \text { if } y=\text { model } \\
0 & \text { otherwise }\end{cases} \\
& f_{2}(x, y)= \begin{cases}1 & \text { if } y=\text { model and } w_{i-1}=\text { statistical } \\
0 & \text { otherwise }\end{cases} \\
& f_{3}(x, y)= \begin{cases}1 & \text { if } y=\text { model }, w_{i-2}=\text { any, } w_{i-1}=\text { statistical } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f_{4}(x, y)= \begin{cases}1 & \text { if } y=\text { model }, w_{i-2}=\text { any } \\
0 & \text { otherwise }\end{cases} \\
& f_{5}(x, y)
\end{aligned}=\left\{\begin{array}{ll}
1 & \text { if } y=\text { model, } w_{i-1} \text { is an adjective } \\
0 & \text { otherwise }
\end{array}\right\} \begin{aligned}
& f_{6}(x, y)= \begin{cases}1 & \text { if } y=\text { model }, w_{i-1} \text { ends in "ical" } \\
0 & \text { otherwise }\end{cases} \\
& f_{7}(x, y)
\end{aligned}=\left\{\begin{array}{ll}
1 & \text { if } y=\text { model, author }=\text { Chomsky } \\
0 & \text { otherwise }
\end{array}\right\} \begin{array}{ll}
1 & \text { if } y=\text { model, "model" is not in } w_{1}, \ldots w_{i-1} \\
f_{8}(x, y) & = \begin{cases}0 & \text { otherwise }\end{cases} \\
f_{9}(x, y) & = \begin{cases}1 & \text { if } y=\text { model, "grammatical" is in } w_{1}, \ldots w_{i-1} \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

Defining Features in Practice

- We had the following "trigram" feature:

$$
f_{3}(x, y)= \begin{cases}1 & \text { if } y=\text { model }, w_{i-2}=\text { any, } w_{i-1}=\text { statistical } \\ 0 & \text { otherwise }\end{cases}
$$

- In practice, we would probably introduce one trigram feature for every trigram seen in the training data: i.e., for all trigrams (u, v, w) seen in training data, create a feature
$f_{N(u, v, w)}(x, y)= \begin{cases}1 & \text { if } y=w, w_{i-2}=u, w_{i-1}=v \\ 0 & \text { otherwise }\end{cases}$
where $N(u, v, w)$ is a function that maps each (u, v, w) trigram to a different integer

The POS-Tagging Example

- Each x is a "history" of the form $\left\langle t_{1}, t_{2}, \ldots, t_{i-1}, w_{1} \ldots w_{n}, i\right\rangle$
- Each y is a POS tag, such as NN, NNS, Vt, Vi, IN, DT, ...
- We have m features $f_{k}(x, y)$ for $k=1 \ldots m$

For example:

$$
\begin{aligned}
& f_{1}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } y=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases} \\
& f_{2}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } y=\mathrm{VBG} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Full Set of Features in Ratnaparkhi, 1996

- Word/tag features for all word/tag pairs, e.g.,

$$
f_{100}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } y=\mathrm{Vt} \\ 0 & \text { otherwise }\end{cases}
$$

- Spelling features for all prefixes/suffixes of length ≤ 4, e.g.,

$$
\begin{aligned}
f_{101}(x, y) & = \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } y=\text { VBG } \\
0 & \text { otherwise }\end{cases} \\
f_{102}(h, t) & = \begin{cases}1 & \text { if current word } w_{i} \text { starts with pre and } y=\mathrm{NN} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Full Set of Features in Ratnaparkhi, 1996

- Contextual Features, e.g.,

$$
\begin{aligned}
& f_{103}(x, y)= \begin{cases}1 & \text { if }\left\langle t_{i-2}, t_{i-1}, y\right\rangle=\langle\mathrm{DT}, \mathrm{JJ}, \mathrm{~V} \mathrm{t}\rangle \\
0 & \text { otherwise }\end{cases} \\
& f_{104}(x, y)= \begin{cases}1 & \text { if }\left\langle t_{i-1}, y\right\rangle=\langle\mathrm{JJ}, \mathrm{~V} \mathrm{t}\rangle \\
0 & \text { otherwise }\end{cases} \\
& f_{105}(x, y)= \begin{cases}1 & \text { if }\langle y\rangle=\langle\mathrm{V} \mathrm{t}\rangle \\
0 & \text { otherwise }\end{cases} \\
& f_{106}(x, y)= \begin{cases}1 & \text { if previous word } w_{i-1}=\text { the and } y=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases} \\
& f_{107}(x, y)= \begin{cases}1 & \text { if next word } w_{i+1}=\text { the and } y=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Final Result

- We can come up with practically any questions (features) regarding history/tag pairs.
- For a given history $x \in \mathcal{X}$, each label in \mathcal{Y} is mapped to a different feature vector

```
f(\langleJJ, DT, \langle Hispaniola, ... \rangle, 6\rangle, Vt) = 1001011001001100110
f(\langleJJ, DT, \langle Hispaniola, . . .\rangle, 6\rangle, JJ) = 0110010101011110010
f(\langleJJ, DT, < Hispaniola, ... \rangle, 6\rangle, NN) = 0001111101001100100
f(\langleJJ, DT, \langle Hispaniola, ...\rangle, 6\rangle, IN) = 0001011011000000010
```


Parameter Vectors

- Given features $f_{k}(x, y)$ for $k=1 \ldots m$, also define a parameter vector $v \in \mathbb{R}^{m}$
- Each (x, y) pair is then mapped to a "score"

$$
v \cdot f(x, y)=\sum_{k} v_{k} f_{k}(x, y)
$$

Language Modeling

- x is a "history" $w_{1}, w_{2}, \ldots w_{i-1}$, e.g.,

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

- Each possible y gets a different score:

$$
\begin{array}{cc}
v \cdot f(x, \text { model })=5.6 & v \cdot f(x, \text { the })=-3.2 \\
v \cdot f(x, i s)=1.5 & v \cdot f(x, \text { of })=1.3 \\
v \cdot f(x, \text { models })=4.5 & \ldots
\end{array}
$$

Log-Linear Models

- We have some input domain \mathcal{X}, and a finite label set \mathcal{Y}. Aim is to provide a conditional probability $p(y \mid x)$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- A feature is a function $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ (Often binary features or indicator functions $\left.f_{k}: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\}\right)$.
- Say we have m features f_{k} for $k=1 \ldots m$ $\Rightarrow \mathrm{A}$ feature vector $f(x, y) \in \mathbb{R}^{m}$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- We also have a parameter vector $v \in \mathbb{R}^{m}$
- We define

$$
p(y \mid x ; v)=\frac{e^{v \cdot f(x, y)}}{\sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x, y^{\prime}\right)}}
$$

Why the name?

$$
\log p(y \mid x ; v)=\underbrace{v \cdot f(x, y)}_{\text {Linear term }}-\underbrace{\log \sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x, y^{\prime}\right)}}_{\text {Normalization term }}
$$

Maximum-Likelihood Estimation

- Maximum-likelihood estimates given training sample $\left(x_{i}, y_{i}\right)$ for $i=1 \ldots n$, each $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}$:

$$
v_{M L}=\operatorname{argmax}_{v \in \mathbb{R}^{m} L(v)}
$$

where

$$
L(v)=\sum_{i=1}^{n} \log p\left(y_{i} \mid x_{i} ; v\right)=\sum_{i=1}^{n} v \cdot f\left(x_{i}, y_{i}\right)-\sum_{i=1}^{n} \log \sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x_{i}, y^{\prime}\right)}
$$

Calculating the Maximum-Likelihood Estimates

- Need to maximize:

$$
L(v)=\sum_{i=1}^{n} v \cdot f\left(x_{i}, y_{i}\right)-\sum_{i=1}^{n} \log \sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x_{i}, y^{\prime}\right)}
$$

- Calculating gradients:

$$
\begin{aligned}
\frac{d L(v)}{d v_{k}} & =\sum_{i=1}^{n} f_{k}\left(x_{i}, y_{i}\right)-\sum_{i=1}^{n} \frac{\sum_{y^{\prime} \in \mathcal{Y}} f_{k}\left(x_{i}, y^{\prime}\right) e^{v \cdot f\left(x_{i}, y^{\prime}\right)}}{\sum_{z^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x_{i}, z^{\prime}\right)}} \\
& =\sum_{i=1}^{n} f_{k}\left(x_{i}, y_{i}\right)-\sum_{i=1}^{\sum_{y^{\prime} \in \mathcal{Y}} f_{k}\left(x_{i}, y^{\prime}\right) \frac{e^{v \cdot f\left(x_{i}, y^{\prime}\right)}}{\sum_{z^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x_{i}, z^{\prime}\right)}}} \\
& =\underbrace{\sum_{i=1}^{n} f_{k}\left(x_{i}, y_{i}\right)}_{\text {Empirical counts }}-\underbrace{\sum_{i=1}^{n} \sum_{y^{\prime} \in \mathcal{Y}} f_{k}\left(x_{i}, y^{\prime}\right) p\left(y^{\prime} \mid x_{i} ; v\right)}_{\text {Expected counts }}
\end{aligned}
$$

Gradient Ascent Methods

- Need to maximize $L(v)$ where

$$
\frac{d L(v)}{d v}=\sum_{i=1}^{n} f\left(x_{i}, y_{i}\right)-\sum_{i=1}^{n} \sum_{y^{\prime} \in \mathcal{Y}} f\left(x_{i}, y^{\prime}\right) p\left(y^{\prime} \mid x_{i} ; v\right)
$$

Initialization: $v=0$
Iterate until convergence:

- Calculate $\Delta=\frac{d L(v)}{d v}$
- Calculate $\beta_{*}=\operatorname{argmax}_{\beta} L(v+\beta \Delta)$ (Line Search)
- Set $v \leftarrow v+\beta_{*} \Delta$

Conjugate Gradient Methods

- (Vanilla) gradient ascent can be very slow
- Conjugate gradient methods require calculation of gradient at each iteration, but do a line search in a direction which is a function of the current gradient, and the previous step taken.
- Conjugate gradient packages are widely available In general: they require a function

$$
\text { calc_gradient }(v) \rightarrow\left(L(v), \frac{d L(v)}{d v}\right)
$$

and that's about it!

Overview

- Log-linear models
- The maximum-entropy property
- Smoothing, feature selection etc. in log-linear models

Overview

- Log-linear models
- The maximum-entropy property
- Smoothing, feature selection etc. in log-linear models

Smoothing in Maximum Entropy Models

- Say we have a feature:

$$
f_{100}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } t=\mathrm{Vt} \\ 0 & \text { otherwise }\end{cases}
$$

- In training data, base is seen 3 times, with Vt every time
- Maximum likelihood solution satisfies

$$
\sum_{i} f_{100}\left(x_{i}, y_{i}\right)=\sum_{i} \sum_{y} p\left(y \mid x_{i} ; v\right) f_{100}\left(x_{i}, y\right)
$$

$\Rightarrow p\left(\mathrm{Vt} \mid x_{i} ; v\right)=1$ for any history x_{i} where $w_{i}=$ base
$\Rightarrow v_{100} \rightarrow \infty$ at maximum-likelihood solution (most likely)
$\Rightarrow p(\mathrm{Vt} \mid x ; v)=1$ for any test data history x where $w=$ base

Regularization

- Modified loss function

$$
L(v)=\sum_{i=1}^{n} v \cdot f\left(x_{i}, y_{i}\right)-\sum_{i=1}^{n} \log \sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x_{i}, y^{\prime}\right)}-\frac{\lambda}{2} \sum_{k=1}^{m} v_{k}^{2}
$$

- Calculating gradients:

$$
\frac{d L(v)}{d v_{k}}=\underbrace{\sum_{i=1}^{n} f_{k}\left(x_{i}, y_{i}\right)}_{\text {Empirical counts }}-\underbrace{\sum_{i=1}^{n} \sum_{y^{\prime} \in \mathcal{Y}} f_{k}\left(x_{i}, y^{\prime}\right) p\left(y^{\prime} \mid x_{i} ; v\right)}_{\text {Expected counts }}-\lambda v_{k}
$$

- Can run conjugate gradient methods as before
- Adds a penalty for large weights

Experiments with Gaussian Priors

- [Chen and Rosenfeld, 1998]: apply log-linear models to language modeling: Estimate $q\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$
- Unigram, bigram, trigram features, e.g.,

$$
\begin{aligned}
& f_{1}\left(w_{i-2}, w_{i-1}, w_{i}\right)= \begin{cases}1 & \text { if trigram is (the, dog,laughs) } \\
0 & \text { otherwise }\end{cases} \\
& f_{2}\left(w_{i-2}, w_{i-1}, w_{i}\right)= \begin{cases}1 & \text { if bigram is (dog, laughs) } \\
0 & \text { otherwise }\end{cases} \\
& f_{3}\left(w_{i-2}, w_{i-1}, w_{i}\right)= \begin{cases}1 & \text { if unigram is (laughs) } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
q\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{e^{f\left(w_{i-2}, w_{i-1}, w_{i}\right) \cdot v}}{\sum_{w} e^{f\left(w_{i-2}, w_{i-1}, w\right) \cdot v}}
$$

Experiments with Gaussian Priors

- In regular (unregularized) log-linear models, if all n-gram features are included, then it's equivalent to maximum-likelihood estimates!

$$
q\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{\operatorname{Count}\left(w_{i-2}, w_{i-1}, w_{i}\right)}{\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)}
$$

- [Chen and Rosenfeld, 1998]: with gaussian priors, get very good results. Performs as well as or better than standardly used "discounting methods" (see lecture 2).
- Downside: computing $\sum_{w} e^{f\left(w_{i-2}, w_{i-1}, w\right) \cdot v}$ is SLOW.

