Log-Linear Models for History-Based Parsing

Michael Collins, Columbia University
The input sentence is $w_{[1:n]} = w_1 \ldots w_n$

Each tag sequence $t_{[1:n]}$ has a conditional probability

$$p(t_{[1:n]} \mid w_{[1:n]}) = \prod_{j=1}^{n} p(t_j \mid w_1 \ldots w_n, t_1 \ldots t_{j-1})$$

Chain rule

$$= \prod_{j=1}^{n} p(t_j \mid w_1 \ldots w_n, t_{j-2}, t_{j-1})$$

Independence assumptions

Estimate $p(t_j \mid w_1 \ldots w_n, t_{j-2}, t_{j-1})$ using log-linear models

Use the Viterbi algorithm to compute

$$\argmax_{t_{[1:n]}} \log p(t_{[1:n]} \mid w_{[1:n]})$$
A General Approach: (Conditional) History-Based Models

- We’ve shown how to define \(p(t_{1:n} \mid w_{1:n}) \) where \(t_{1:n} \) is a tag sequence.

- How do we define \(p(T \mid S) \) if \(T \) is a parse tree (or another structure)? (We use the notation \(S = w_{1:n} \)).
A General Approach: (Conditional) History-Based Models

- Step 1: represent a tree as a sequence of decisions $d_1 \ldots d_m$

 $$T = \langle d_1, d_2, \ldots, d_m \rangle$$

 m is not necessarily the length of the sentence

- Step 2: the probability of a tree is

 $$p(T \mid S) = \prod_{i=1}^{m} p(d_i \mid d_1 \ldots d_{i-1}, S)$$

- Step 3: Use a log-linear model to estimate

 $$p(d_i \mid d_1 \ldots d_{i-1}, S)$$

- Step 4: Search?? (answer we’ll get to later: beam or heuristic search)
An Example Tree

S(questioned)
 NP(lawyer)
 DT
 the
 lawyer
 VP(questioned)
 Vt
 questioned
 NP(witness)
 DT
 the
 witness
 PP(about)
 IN
 about
 NP(revolver)
 DT
 the
 revolver
Ratnaparkhi’s Parser: Three Layers of Structure

1. Part-of-speech tags
2. Chunks
3. Remaining structure
Layer 1: Part-of-Speech Tags

- Step 1: represent a tree as a sequence of decisions $d_1 \ldots d_m$

$$T = \langle d_1, d_2, \ldots d_m \rangle$$

- First n decisions are tagging decisions

$$\langle d_1 \ldots d_n \rangle = \langle \text{DT, NN, Vt, DT, NN, IN, DT, NN} \rangle$$
Layer 2: Chunks

Chunks are defined as any phrase where all children are part-of-speech tags

(Other common chunks are ADJP, QP)
Layer 2: Chunks

- Start(NP) Join(NP) Other Start(NP) Join(NP) Other Start(NP) Join(NP)
 | DT | NN | Vt | DT | NN | IN | DT | NN |
 | the | lawyer| questioned | the | witness| about | the | revolver |

- Step 1: represent a tree as a sequence of decisions \(d_1 \ldots d_m \)

 \[
 T = \langle d_1, d_2, \ldots, d_m \rangle
 \]

- First \(n \) decisions are tagging decisions
 - Next \(n \) decisions are chunk tagging decisions

\[
\langle d_1 \ldots d_{2n} \rangle = \langle \text{DT, NN, Vt, DT, NN, IN, DT, NN, Start(NP), Join(NP), Other, Start(NP), Join(NP), Other, Start(NP), Join(NP)} \rangle
\]
Layer 3: Remaining Structure

Alternate Between Two Classes of Actions:
- Join(X) or Start(X), where X is a label (NP, S, VP etc.)
- Check=YES or Check=NO

Meaning of these actions:
- Start(X) starts a new constituent with label X (always acts on leftmost constituent with no start or join label above it)
- Join(X) continues a constituent with label X (always acts on leftmost constituent with no start or join label above it)
- Check=NO does nothing
- Check=YES takes previous Join or Start action, and converts it into a completed constituent
the lawyer questioned the witness about the revolver
The lawyer questioned the witness about the revolver.

Check=NO
The lawyer questioned the witness about the revolver.
the lawyer questioned the witness about the revolver.

Check=NO
the lawyer questioned the witness about the revolver
the lawyer questioned the witness about the revolver

Check=NO
the lawyer questioned the witness about the revolver
The lawyer questioned the witness about the revolver.

Check=YES
the lawyer questioned the witness about the revolver.
the lawyer questioned the witness about the revolver.
the lawyer questioned the witness about the revolver.
the lawyer

questioned

the witness

about

the revolver

Check=YES
The Final Sequence of decisions

\[\langle d_1 \ldots d_m \rangle \] = \langle DT, NN, Vt, DT, NN, IN, DT, NN, \\
Start(NP), Join(NP), Other, Start(NP), Join(NP), \\
Other, Start(NP), Join(NP), \\
Start(S), Check=NO, Start(VP), Check=NO, \\
Join(VP), Check=NO, Start(PP), Check=NO, \\
Join(PP), Check=YES, Join(VP), Check=YES, \\
Join(S), Check=YES \rangle \]
A General Approach: (Conditional) History-Based Models

- Step 1: represent a tree as a sequence of decisions \(d_1 \ldots d_m \)

\[T = \langle d_1, d_2, \ldots d_m \rangle \]

\(m \) is not necessarily the length of the sentence

- Step 2: the probability of a tree is

\[p(T \mid S) = \prod_{i=1}^{m} p(d_i \mid d_1 \ldots d_{i-1}, S) \]

- Step 3: Use a log-linear model to estimate

\[p(d_i \mid d_1 \ldots d_{i-1}, S) \]

- Step 4: Search?? (answer we’ll get to later: beam or heuristic search)
Applying a Log-Linear Model

▶ Step 3: Use a log-linear model to estimate

\[p(d_i \mid d_1 \ldots d_{i-1}, S) \]

▶ A reminder:

\[p(d_i \mid d_1 \ldots d_{i-1}, S) = \frac{e^{f(\langle d_1 \ldots d_{i-1}, S \rangle, d_i) \cdot v}}{\sum_{d \in A} e^{f(\langle d_1 \ldots d_{i-1}, S \rangle, d) \cdot v}} \]

where:

\[\langle d_1 \ldots d_{i-1}, S \rangle \] is the history

\(d_i \) is the outcome

\(f \) maps a history/outcome pair to a feature vector

\(v \) is a parameter vector

\(A \) is set of possible actions
Applying a Log-Linear Model

- Step 3: Use a log-linear model to estimate

\[p(d_i \mid d_1 \ldots d_{i-1}, S) = \frac{e^{f(\langle d_1 \ldots d_{i-1}, S, d_i \rangle \cdot v}}{\sum_{d \in A} e^{f(\langle d_1 \ldots d_{i-1}, S, d \rangle \cdot v}} \]

- The big question: how do we define \(f \)?

- Ratnaparkhi’s method defines \(f \) differently depending on whether next decision is:
 - A tagging decision
 (same features as before for POS tagging!)
 - A chunking decision
 - A start/join decision after chunking
 - A check=no/check=yes decision
Layer 3: Join or Start

- Looks at head word, constituent (or POS) label, and start/join annotation of n'th tree relative to the decision, where $n = -2, -1$
- Looks at head word, constituent (or POS) label of n'th tree relative to the decision, where $n = 0, 1, 2$
- Looks at bigram features of the above for (-1,0) and (0,1)
- Looks at trigram features of the above for (-2,-1,0), (-1,0,1) and (0, 1, 2)
- The above features with all combinations of head words excluded
- Various punctuation features
Layer 3: Check=NO or Check=YES

- A variety of questions concerning the proposed constituent
The Search Problem

- In POS tagging, we could use the Viterbi algorithm because

\[p(t_j | w_1 \ldots w_n, j, t_1 \ldots t_{j-1}) = p(t_j | w_1 \ldots w_n, j, t_{j-2} \ldots t_{j-1}) \]

- Now: Decision \(d_i \) could depend on arbitrary decisions in the “past” \(\Rightarrow \) no chance for dynamic programming

- Instead, Ratnaparkhi uses a beam search method