Log-Linear Models for History-Based Parsing

Michael Collins, Columbia University

Log-Linear Taggers: Summary

- The input sentence is $w_{[1: n]}=w_{1} \ldots w_{n}$
- Each tag sequence $t_{[1: n]}$ has a conditional probability

$$
\begin{array}{rlrl}
p\left(t_{[1: n]} \mid w_{[1: n]}\right) & =\prod_{j=1}^{n} p\left(t_{j} \mid w_{1} \ldots w_{n}, t_{1} \ldots t_{j-1}\right) & & \text { Chain rule } \\
& =\prod_{j=1}^{n} p\left(t_{j} \mid w_{1} \ldots w_{n}, t_{j-2}, t_{j-1}\right) & & \text { Independence } \\
& & \text { assumptions }
\end{array}
$$

- Estimate $p\left(t_{j} \mid w_{1} \ldots w_{n}, t_{j-2}, t_{j-1}\right)$ using log-linear models
- Use the Viterbi algorithm to compute

$$
\operatorname{argmax}_{t_{[1: n]}} \log p\left(t_{[1: n]} \mid w_{[1: n]}\right)
$$

A General Approach:

(Conditional) History-Based Models

- We've shown how to define $p\left(t_{[1: n]} \mid w_{[1: n]}\right)$ where $t_{[1: n]}$ is a tag sequence
- How do we define $p(T \mid S)$ if T is a parse tree (or another structure)? (We use the notation $S=w_{[1: n]}$)

A General Approach:

(Conditional) History-Based Models

- Step 1: represent a tree as a sequence of decisions $d_{1} \ldots d_{m}$

$$
T=\left\langle d_{1}, d_{2}, \ldots d_{m}\right\rangle
$$

m is not necessarily the length of the sentence

- Step 2: the probability of a tree is

$$
p(T \mid S)=\prod_{i=1}^{m} p\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)
$$

- Step 3: Use a log-linear model to estimate $p\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)$
- Step 4: Search?? (answer we'll get to later: beam or heuristic search)

An Example Tree

Ratnaparkhi's Parser: Three Layers of Structure

1. Part-of-speech tags
2. Chunks
3. Remaining structure

Layer 1: Part-of-Speech Tags

- Step 1: represent a tree as a sequence of decisions $d_{1} \ldots d_{m}$

$$
T=\left\langle d_{1}, d_{2}, \ldots d_{m}\right\rangle
$$

- First n decisions are tagging decisions

$$
\left\langle d_{1} \ldots d_{n}\right\rangle=\langle\mathrm{DT}, \mathrm{NN}, \mathrm{Vt}, \mathrm{DT}, \mathrm{NN}, \mathrm{IN}, \mathrm{DT}, \mathrm{NN}\rangle
$$

Layer 2: Chunks

Chunks are defined as any phrase where all children are part-of-speech tags
(Other common chunks are ADJP, QP)

Layer 2: Chunks

- Step 1: represent a tree as a sequence of decisions $d_{1} \ldots d_{m}$

$$
T=\left\langle d_{1}, d_{2}, \ldots d_{m}\right\rangle
$$

- First n decisions are tagging decisions

Next n decisions are chunk tagging decisions

$$
\begin{aligned}
\left\langle d_{1} \ldots d_{2 n}\right\rangle= & \langle\text { DT, NN, Vt, DT, NN, IN, DT, NN, } \\
& \text { Start(NP), Join(NP), Other, Start(NP), Join(NP), } \\
& \text { Other, Start(NP), Join(NP) }\rangle
\end{aligned}
$$

Layer 3: Remaining Structure

Alternate Between Two Classes of Actions:

- Join(X) or Start(X), where X is a label (NP, S, VP etc.)
- Check=YES or Check=NO

Meaning of these actions:

- Start(X) starts a new constituent with label X (always acts on leftmost constituent with no start or join label above it)
- Join(X) continues a constituent with label X (always acts on leftmost constituent with no start or join label above it)
- Check=NO does nothing
- Check=YES takes previous Join or Start action, and converts it into a completed constituent

Check=NO

Check=NO

Check=NO

Check=NO

Check=YES

Check=YES

Check=YES

The Final Sequence of decisions

$$
\begin{aligned}
\left\langle d_{1} \ldots d_{m}\right\rangle= & \langle\text { DT, NN, Vt, DT, NN, IN, DT, NN, } \\
& \text { Start(NP), Join(NP), Other, Start(NP), Join(NP), } \\
& \text { Other, Start(NP), Join(NP), } \\
& \text { Start(S), Check=NO, Start(VP), Check=NO, } \\
& \text { Join(VP), Check=NO, Start(PP), Check=NO, } \\
& \text { Join(PP), Check=YES, Join(VP), Check=YES, } \\
& \text { Join(S), Check=YES }\rangle
\end{aligned}
$$

A General Approach:

(Conditional) History-Based Models

- Step 1: represent a tree as a sequence of decisions $d_{1} \ldots d_{m}$

$$
T=\left\langle d_{1}, d_{2}, \ldots d_{m}\right\rangle
$$

m is not necessarily the length of the sentence

- Step 2: the probability of a tree is

$$
p(T \mid S)=\prod_{i=1}^{m} p\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)
$$

- Step 3: Use a log-linear model to estimate

$$
p\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)
$$

- Step 4: Search?? (answer we'll get to later: beam or heuristic search)

Applying a Log-Linear Model

- Step 3: Use a log-linear model to estimate

$$
p\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)
$$

- A reminder:

$$
p\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)=\frac{e^{f\left(\left\langle d_{1} \ldots d_{i-1}, S\right\rangle, d_{i}\right) \cdot v}}{\sum_{d \in \mathcal{A}} e^{f\left(\left\langle d_{1} \ldots d_{i-1}, S\right\rangle, d\right) \cdot v}}
$$

where:
$\left\langle d_{1} \ldots d_{i-1}, S\right\rangle \quad$ is the history
$d_{i} \quad$ is the outcome
f maps a history/outcome pair to a feature vector
v is a parameter vector
\mathcal{A} is set of possible actions

Applying a Log-Linear Model

- Step 3: Use a log-linear model to estimate

$$
p\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)=\frac{e^{f\left(\left\langle d_{1} \ldots d_{i-1}, S\right\rangle, d_{i}\right) \cdot v}}{\sum_{d \in \mathcal{A}} e^{f\left(\left\langle d_{1} \ldots d_{i-1}, S\right\rangle, d\right) \cdot v}}
$$

- The big question: how do we define f ?
- Ratnaparkhi's method defines f differently depending on whether next decision is:
- A tagging decision (same features as before for POS tagging!)
- A chunking decision
- A start/join decision after chunking
- A check=no/check=yes decision

Layer 3: Join or Start

- Looks at head word, constituent (or POS) label, and start/join annotation of n 'th tree relative to the decision, where $n=-2,-1$
- Looks at head word, constituent (or POS) label of n 'th tree relative to the decision, where $n=0,1,2$
- Looks at bigram features of the above for $(-1,0)$ and $(0,1)$
- Looks at trigram features of the above for (-2,-1,0), (-1,0,1) and ($0,1,2$)
- The above features with all combinations of head words excluded
- Various punctuation features

Layer 3: Check=NO or Check=YES

- A variety of questions concerning the proposed constituent

The Search Problem

- In POS tagging, we could use the Viterbi algorithm because

$$
p\left(t_{j} \mid w_{1} \ldots w_{n}, j, t_{1} \ldots t_{j-1}\right)=p\left(t_{j} \mid w_{1} \ldots w_{n}, j, t_{j-2} \ldots t_{j-1}\right)
$$

- Now: Decision d_{i} could depend on arbitrary decisions in the "past" \Rightarrow no chance for dynamic programming
- Instead, Ratnaparkhi uses a beam search method

