
Log-Linear Models for History-Based Parsing

Michael Collins, Columbia University

Log-Linear Taggers: Summary

I The input sentence is w[1:n] = w1 . . . wn

I Each tag sequence t[1:n] has a conditional probability

p(t[1:n] | w[1:n]) =
∏n

j=1 p(tj | w1 . . . wn, t1 . . . tj−1) Chain rule

=
∏n

j=1 p(tj | w1 . . . wn, tj−2, tj−1) Independence

assumptions

I Estimate p(tj | w1 . . . wn, tj−2, tj−1) using log-linear models

I Use the Viterbi algorithm to compute

argmaxt[1:n]
log p(t[1:n] | w[1:n])

A General Approach:

(Conditional) History-Based Models

I We’ve shown how to define p(t[1:n] | w[1:n]) where t[1:n] is a
tag sequence

I How do we define p(T | S) if T is a parse tree (or another
structure)? (We use the notation S = w[1:n])

A General Approach:

(Conditional) History-Based Models

I Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉
m is not necessarily the length of the sentence

I Step 2: the probability of a tree is

p(T | S) =
m∏
i=1

p(di | d1 . . . di−1, S)

I Step 3: Use a log-linear model to estimate
p(di | d1 . . . di−1, S)

I Step 4: Search?? (answer we’ll get to later: beam or
heuristic search)

An Example Tree

S(questioned)

NP(lawyer)

DT

the

NN

lawyer

VP(questioned)

Vt

questioned

NP(witness)

DT

the

NN

witness

PP(about)

IN

about

NP(revolver)

DT

the

NN

revolver

Ratnaparkhi’s Parser: Three Layers of Structure

1. Part-of-speech tags

2. Chunks

3. Remaining structure

Layer 1: Part-of-Speech Tags

DT

the

NN

lawyer

Vt

questioned

DT

the

NN

witness

IN

about

DT

the

NN

revolver

I Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉

I First n decisions are tagging decisions
〈d1 . . . dn〉 = 〈 DT, NN, Vt, DT, NN, IN, DT, NN 〉

Layer 2: Chunks

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Chunks are defined as any phrase where all children are
part-of-speech tags

(Other common chunks are ADJP, QP)

Layer 2: Chunks

Start(NP)

DT

the

Join(NP)

NN

lawyer

Other

Vt

questioned

Start(NP)

DT

the

Join(NP)

NN

witness

Other

IN

about

Start(NP)

DT

the

Join(NP)

NN

revolver

I Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉

I First n decisions are tagging decisions
Next n decisions are chunk tagging decisions

〈d1 . . . d2n〉 = 〈 DT, NN, Vt, DT, NN, IN, DT, NN,
Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP)〉

Layer 3: Remaining Structure

Alternate Between Two Classes of Actions:

I Join(X) or Start(X), where X is a label (NP, S, VP etc.)
I Check=YES or Check=NO

Meaning of these actions:

I Start(X) starts a new constituent with label X
(always acts on leftmost constituent with no start or join
label above it)

I Join(X) continues a constituent with label X
(always acts on leftmost constituent with no start or join
label above it)

I Check=NO does nothing
I Check=YES takes previous Join or Start action, and converts

it into a completed constituent

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Start(S)

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Start(S)

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Check=NO

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Check=NO

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Check=NO

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Start(PP)

IN

about

NP

DT

the

NN

revolver

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Start(PP)

IN

about

NP

DT

the

NN

revolver

Check=NO

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Start(PP)

IN

about

Join(PP)

NP

DT

the

NN

revolver

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

Check=YES

Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Join(VP)

PP

IN

about

NP

DT

the

NN

revolver

Start(S)

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

Check=YES

Start(S)

NP

DT

the

NN

lawyer

Join(S)

VP

Vt

questioned

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

Check=YES

The Final Sequence of decisions

〈d1 . . . dm〉 = 〈 DT, NN, Vt, DT, NN, IN, DT, NN,
Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP),
Start(S), Check=NO, Start(VP), Check=NO,
Join(VP), Check=NO, Start(PP), Check=NO,
Join(PP), Check=YES, Join(VP), Check=YES,
Join(S), Check=YES 〉

A General Approach:

(Conditional) History-Based Models
I Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉

m is not necessarily the length of the sentence

I Step 2: the probability of a tree is
p(T | S) =

∏m
i=1 p(di | d1 . . . di−1, S)

I Step 3: Use a log-linear model to estimate

p(di | d1 . . . di−1, S)

I Step 4: Search?? (answer we’ll get to later: beam or heuristic
search)

Applying a Log-Linear Model

I Step 3: Use a log-linear model to estimate

p(di | d1 . . . di−1, S)

I A reminder:

p(di | d1 . . . di−1, S) =
ef(〈d1...di−1,S〉,di)·v∑
d∈A e

f(〈d1...di−1,S〉,d)·v

where:

〈d1 . . . di−1, S〉 is the history

di is the outcome

f maps a history/outcome pair to a feature vector

v is a parameter vector

A is set of possible actions

Applying a Log-Linear Model

I Step 3: Use a log-linear model to estimate

p(di | d1 . . . di−1, S) =
ef(〈d1...di−1,S〉,di)·v∑
d∈A e

f(〈d1...di−1,S〉,d)·v

I The big question: how do we define f?

I Ratnaparkhi’s method defines f differently depending on
whether next decision is:

I A tagging decision
(same features as before for POS tagging!)

I A chunking decision
I A start/join decision after chunking
I A check=no/check=yes decision

Layer 3: Join or Start

I Looks at head word, constituent (or POS) label, and
start/join annotation of n’th tree relative to the decision,
where n = −2,−1

I Looks at head word, constituent (or POS) label of n’th tree
relative to the decision, where n = 0, 1, 2

I Looks at bigram features of the above for (-1,0) and (0,1)

I Looks at trigram features of the above for (-2,-1,0), (-1,0,1)
and (0, 1, 2)

I The above features with all combinations of head words
excluded

I Various punctuation features

Layer 3: Check=NO or Check=YES

I A variety of questions concerning the proposed constituent

The Search Problem

I In POS tagging, we could use the Viterbi algorithm because

p(tj | w1 . . . wn, j, t1 . . . tj−1) = p(tj | w1 . . . wn, j, tj−2 . . . tj−1)

I Now: Decision di could depend on arbitrary decisions in the
“past” ⇒ no chance for dynamic programming

I Instead, Ratnaparkhi uses a beam search method

