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Log-Linear Taggers: Summary

I The input sentence is w[1:n] = w1 . . . wn

I Each tag sequence t[1:n] has a conditional probability

p(t[1:n] | w[1:n]) =
∏n

j=1 p(tj | w1 . . . wn, t1 . . . tj−1) Chain rule

=
∏n

j=1 p(tj | w1 . . . wn, tj−2, tj−1) Independence

assumptions

I Estimate p(tj | w1 . . . wn, tj−2, tj−1) using log-linear models

I Use the Viterbi algorithm to compute

argmaxt[1:n]
log p(t[1:n] | w[1:n])



A General Approach:

(Conditional) History-Based Models

I We’ve shown how to define p(t[1:n] | w[1:n]) where t[1:n] is a
tag sequence

I How do we define p(T | S) if T is a parse tree (or another
structure)? (We use the notation S = w[1:n])



A General Approach:

(Conditional) History-Based Models

I Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉
m is not necessarily the length of the sentence

I Step 2: the probability of a tree is

p(T | S) =
m∏
i=1

p(di | d1 . . . di−1, S)

I Step 3: Use a log-linear model to estimate
p(di | d1 . . . di−1, S)

I Step 4: Search?? (answer we’ll get to later: beam or
heuristic search)
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Ratnaparkhi’s Parser: Three Layers of Structure

1. Part-of-speech tags

2. Chunks

3. Remaining structure



Layer 1: Part-of-Speech Tags
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I Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉

I First n decisions are tagging decisions
〈d1 . . . dn〉 = 〈 DT, NN, Vt, DT, NN, IN, DT, NN 〉



Layer 2: Chunks
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Chunks are defined as any phrase where all children are
part-of-speech tags

(Other common chunks are ADJP, QP)



Layer 2: Chunks
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I Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉

I First n decisions are tagging decisions
Next n decisions are chunk tagging decisions

〈d1 . . . d2n〉 = 〈 DT, NN, Vt, DT, NN, IN, DT, NN,
Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP)〉



Layer 3: Remaining Structure

Alternate Between Two Classes of Actions:

I Join(X) or Start(X), where X is a label (NP, S, VP etc.)
I Check=YES or Check=NO

Meaning of these actions:

I Start(X) starts a new constituent with label X
(always acts on leftmost constituent with no start or join
label above it)

I Join(X) continues a constituent with label X
(always acts on leftmost constituent with no start or join
label above it)

I Check=NO does nothing
I Check=YES takes previous Join or Start action, and converts

it into a completed constituent
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The Final Sequence of decisions

〈d1 . . . dm〉 = 〈 DT, NN, Vt, DT, NN, IN, DT, NN,
Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP),
Start(S), Check=NO, Start(VP), Check=NO,
Join(VP), Check=NO, Start(PP), Check=NO,
Join(PP), Check=YES, Join(VP), Check=YES,
Join(S), Check=YES 〉



A General Approach:

(Conditional) History-Based Models
I Step 1: represent a tree as a sequence of decisions d1 . . . dm

T = 〈d1, d2, . . . dm〉

m is not necessarily the length of the sentence

I Step 2: the probability of a tree is
p(T | S) =

∏m
i=1 p(di | d1 . . . di−1, S)

I Step 3: Use a log-linear model to estimate

p(di | d1 . . . di−1, S)

I Step 4: Search?? (answer we’ll get to later: beam or heuristic
search)



Applying a Log-Linear Model

I Step 3: Use a log-linear model to estimate

p(di | d1 . . . di−1, S)

I A reminder:

p(di | d1 . . . di−1, S) =
ef(〈d1...di−1,S〉,di)·v∑
d∈A e

f(〈d1...di−1,S〉,d)·v

where:

〈d1 . . . di−1, S〉 is the history

di is the outcome

f maps a history/outcome pair to a feature vector

v is a parameter vector

A is set of possible actions



Applying a Log-Linear Model

I Step 3: Use a log-linear model to estimate

p(di | d1 . . . di−1, S) =
ef(〈d1...di−1,S〉,di)·v∑
d∈A e

f(〈d1...di−1,S〉,d)·v

I The big question: how do we define f?

I Ratnaparkhi’s method defines f differently depending on
whether next decision is:

I A tagging decision
(same features as before for POS tagging!)

I A chunking decision
I A start/join decision after chunking
I A check=no/check=yes decision



Layer 3: Join or Start

I Looks at head word, constituent (or POS) label, and
start/join annotation of n’th tree relative to the decision,
where n = −2,−1

I Looks at head word, constituent (or POS) label of n’th tree
relative to the decision, where n = 0, 1, 2

I Looks at bigram features of the above for (-1,0) and (0,1)

I Looks at trigram features of the above for (-2,-1,0), (-1,0,1)
and (0, 1, 2)

I The above features with all combinations of head words
excluded

I Various punctuation features



Layer 3: Check=NO or Check=YES

I A variety of questions concerning the proposed constituent



The Search Problem

I In POS tagging, we could use the Viterbi algorithm because

p(tj | w1 . . . wn, j, t1 . . . tj−1) = p(tj | w1 . . . wn, j, tj−2 . . . tj−1)

I Now: Decision di could depend on arbitrary decisions in the
“past” ⇒ no chance for dynamic programming

I Instead, Ratnaparkhi uses a beam search method


