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The Language Modeling Problem

I We have some (finite) vocabulary,
say V = {the, a, man, telescope, Beckham, two, . . .}

I We have an (infinite) set of strings, V†

the STOP
a STOP
the fan STOP
the fan saw Beckham STOP
the fan saw saw STOP
the fan saw Beckham play for Real Madrid STOP



The Language Modeling Problem (Continued)

I We have a training sample of example sentences in
English

I We need to “learn” a probability distribution p
i.e., p is a function that satisfies∑

x∈V†
p(x) = 1, p(x) ≥ 0 for all x ∈ V†

p(the STOP) = 10−12

p(the fan STOP) = 10−8

p(the fan saw Beckham STOP) = 2× 10−8

p(the fan saw saw STOP) = 10−15

. . .
p(the fan saw Beckham play for Real Madrid STOP) = 2× 10−9

. . .
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Why on earth would we want to do this?!

I Speech recognition was the original motivation.
(Related problems are optical character recognition,
handwriting recognition.)

I The estimation techniques developed for this problem will
be VERY useful for other problems in NLP



Why on earth would we want to do this?!

I Speech recognition was the original motivation.
(Related problems are optical character recognition,
handwriting recognition.)

I The estimation techniques developed for this problem will
be VERY useful for other problems in NLP



A Naive Method

I We have N training sentences

I For any sentence x1 . . . xn, c(x1 . . . xn) is the number of
times the sentence is seen in our training data

I A naive estimate:

p(x1 . . . xn) =
c(x1 . . . xn)

N
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Markov Processes

I Consider a sequence of random variables X1, X2, . . . Xn.
Each random variable can take any value in a finite set V .
For now we assume the length n is fixed (e.g., n = 100).

I Our goal: model

P (X1 = x1, X2 = x2, . . . , Xn = xn)



First-Order Markov Processes

P (X1 = x1, X2 = x2, . . . Xn = xn)

= P (X1 = x1)
n∏
i=2

P (Xi = xi|X1 = x1, . . . , Xi−1 = xi−1)

= P (X1 = x1)
n∏
i=2

P (Xi = xi|Xi−1 = xi−1)

The first-order Markov assumption: For any i ∈ {2 . . . n}, for
any x1 . . . xi,

P (Xi = xi|X1 = x1 . . . Xi−1 = xi−1) = P (Xi = xi|Xi−1 = xi−1)
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Second-Order Markov Processes

P (X1 = x1, X2 = x2, . . . Xn = xn)

= P (X1 = x1)× P (X2 = x2|X1 = x1)

×
n∏
i=3

P (Xi = xi|Xi−2 = xi−2, Xi−1 = xi−1)

=
n∏
i=1

P (Xi = xi|Xi−2 = xi−2, Xi−1 = xi−1)

(For convenience we assume x0 = x−1 = *, where * is a
special “start” symbol.)
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Modeling Variable Length Sequences

I We would like the length of the sequence, n, to also be a
random variable

I A simple solution: always define Xn = STOP where
STOP is a special symbol

I Then use a Markov process as before:

P (X1 = x1, X2 = x2, . . . Xn = xn)

=
n∏
i=1

P (Xi = xi|Xi−2 = xi−2, Xi−1 = xi−1)

(For convenience we assume x0 = x−1 = *, where * is a
special “start” symbol.)
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Trigram Language Models

I A trigram language model consists of:

1. A finite set V
2. A parameter q(w|u, v) for each trigram u, v, w such that

w ∈ V ∪ {STOP}, and u, v ∈ V ∪ {*}.

I For any sentence x1 . . . xn where xi ∈ V for
i = 1 . . . (n− 1), and xn = STOP, the probability of the
sentence under the trigram language model is

p(x1 . . . xn) =
n∏
i=1

q(xi|xi−2, xi−1)

where we define x0 = x−1 = *.
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An Example

For the sentence

the dog barks STOP

we would have

p(the dog barks STOP) = q(the|*, *)

×q(dog|*, the)

×q(barks|the, dog)

×q(STOP|dog, barks)



The Trigram Estimation Problem

Remaining estimation problem:

q(wi | wi−2, wi−1)

For example:
q(laughs | the, dog)

A natural estimate (the “maximum likelihood estimate”):

q(wi | wi−2, wi−1) =
Count(wi−2, wi−1, wi)

Count(wi−2, wi−1)

q(laughs | the, dog) =
Count(the, dog, laughs)

Count(the, dog)
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Sparse Data Problems

A natural estimate (the “maximum likelihood estimate”):

q(wi | wi−2, wi−1) =
Count(wi−2, wi−1, wi)

Count(wi−2, wi−1)

q(laughs | the, dog) =
Count(the, dog, laughs)

Count(the, dog)

Say our vocabulary size is N = |V|, then there are N3

parameters in the model.

e.g., N = 20, 000 ⇒ 20, 0003 = 8× 1012 parameters



Overview

I The language modeling problem

I Trigram models

I Evaluating language models: perplexity

I Estimation techniques:

I Linear interpolation
I Discounting methods



Evaluating a Language Model: Perplexity

I We have some test data, m sentences

s1, s2, s3, . . . , sm

I We could look at the probability under our model∏m
i=1 p(si). Or more conveniently, the log probability

log
m∏
i=1

p(si) =
m∑
i=1

log p(si)

I In fact the usual evaluation measure is perplexity

Perplexity = 2−l where l =
1

M

m∑
i=1

log p(si)

and M is the total number of words in the test data.
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Some Intuition about Perplexity

I Say we have a vocabulary V , and N = |V|+ 1
and model that predicts

q(w|u, v) =
1

N

for all w ∈ V ∪ {STOP}, for all u, v ∈ V ∪ {*}.
I Easy to calculate the perplexity in this case:

Perplexity = 2−l where l = log
1

N

⇒
Perplexity = N

Perplexity is a measure of effective “branching factor”



Typical Values of Perplexity

I Results from Goodman (“A bit of progress in language
modeling”), where |V| = 50, 000

I A trigram model: p(x1 . . . xn) =
∏n

i=1 q(xi|xi−2, xi−1).
Perplexity = 74

I A bigram model: p(x1 . . . xn) =
∏n

i=1 q(xi|xi−1).
Perplexity = 137

I A unigram model: p(x1 . . . xn) =
∏n

i=1 q(xi).
Perplexity = 955
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Some History

I Shannon conducted experiments on entropy of English
i.e., how good are people at the perplexity game?

C. Shannon. Prediction and entropy of printed
English. Bell Systems Technical Journal,
30:50–64, 1951.



Some History
Chomsky (in Syntactic Structures (1957)):

Second, the notion “grammatical” cannot be identified with
“meaningful” or “significant” in any semantic sense.
Sentences (1) and (2) are equally nonsensical, but any speaker
of English will recognize that only the former is grammatical.

(1) Colorless green ideas sleep furiously.

(2) Furiously sleep ideas green colorless.

. . .

. . . Third, the notion “grammatical in English” cannot be
identified in any way with the notion “high order of statistical
approximation to English”. It is fair to assume that neither
sentence (1) nor (2) (nor indeed any part of these sentences)
has ever occurred in an English discourse. Hence, in any
statistical model for grammaticalness, these sentences will be
ruled out on identical grounds as equally ‘remote’ from
English. Yet (1), though nonsensical, is grammatical, while
(2) is not. . . .
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Sparse Data Problems

A natural estimate (the “maximum likelihood estimate”):
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Count(the, dog, laughs)

Count(the, dog)

Say our vocabulary size is N = |V|, then there are N3

parameters in the model.
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The Bias-Variance Trade-Off

I Trigram maximum-likelihood estimate

qML(wi | wi−2, wi−1) =
Count(wi−2, wi−1, wi)

Count(wi−2, wi−1)

I Bigram maximum-likelihood estimate

qML(wi | wi−1) =
Count(wi−1, wi)

Count(wi−1)

I Unigram maximum-likelihood estimate

qML(wi) =
Count(wi)

Count()



Linear Interpolation

I Take our estimate q(wi | wi−2, wi−1) to be

q(wi | wi−2, wi−1) = λ1 × qML(wi | wi−2, wi−1)
+λ2 × qML(wi | wi−1)
+λ3 × qML(wi)

where λ1 + λ2 + λ3 = 1, and λi ≥ 0 for all i.



Linear Interpolation (continued)

Our estimate correctly defines a distribution (define
V ′ = V ∪ {STOP}):∑
w∈V ′ q(w | u, v)

=
∑

w∈V ′ [λ1 × qML(w | u, v) + λ2 × qML(w | v) + λ3 × qML(w)]

= λ1
∑

w qML(w | u, v) + λ2
∑

w qML(w | v) + λ3
∑

w qML(w)

= λ1 + λ2 + λ3

= 1

(Can show also that q(w | u, v) ≥ 0 for all w ∈ V ′)
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How to estimate the λ values?

I Hold out part of training set as “validation” data

I Define c′(w1, w2, w3) to be the number of times the
trigram (w1, w2, w3) is seen in validation set

I Choose λ1, λ2, λ3 to maximize:

L(λ1, λ2, λ3) =
∑

w1,w2,w3

c′(w1, w2, w3) log q(w3 | w1, w2)

such that λ1 + λ2 + λ3 = 1, and λi ≥ 0 for all i, and
where

q(wi | wi−2, wi−1) = λ1 × qML(wi | wi−2, wi−1)
+λ2 × qML(wi | wi−1)
+λ3 × qML(wi)
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Allowing the λ’s to vary

I Take a function Π that partitions histories
e.g.,

Π(wi−2, wi−1) =


1 If Count(wi−1, wi−2) = 0
2 If 1 ≤ Count(wi−1, wi−2) ≤ 2
3 If 3 ≤ Count(wi−1, wi−2) ≤ 5
4 Otherwise

I Introduce a dependence of the λ’s on the partition:

q(wi | wi−2, wi−1) = λ
Π(wi−2,wi−1)
1 × qML(wi | wi−2, wi−1)

+λ
Π(wi−2,wi−1)
2 × qML(wi | wi−1)

+λ
Π(wi−2,wi−1)
3 × qML(wi)

where λ
Π(wi−2,wi−1)
1 + λ

Π(wi−2,wi−1)
2 + λ

Π(wi−2,wi−1)
3 = 1,

and λ
Π(wi−2,wi−1)
i ≥ 0 for all i.
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Discounting Methods
I Say we’ve seen the following counts:

x Count(x) qML(wi | wi−1)
the 48

the, dog 15 15/48
the, woman 11 11/48
the, man 10 10/48
the, park 5 5/48
the, job 2 2/48
the, telescope 1 1/48
the, manual 1 1/48
the, afternoon 1 1/48
the, country 1 1/48
the, street 1 1/48

I The maximum-likelihood estimates are high
(particularly for low count items)



Discounting Methods
I Now define “discounted” counts,

Count∗(x) = Count(x)− 0.5
I New estimates:

x Count(x) Count∗(x) Count∗(x)

Count(the)

the 48

the, dog 15 14.5 14.5/48
the, woman 11 10.5 10.5/48
the, man 10 9.5 9.5/48
the, park 5 4.5 4.5/48
the, job 2 1.5 1.5/48
the, telescope 1 0.5 0.5/48
the, manual 1 0.5 0.5/48
the, afternoon 1 0.5 0.5/48
the, country 1 0.5 0.5/48
the, street 1 0.5 0.5/48



Discounting Methods (Continued)
I We now have some “missing probability mass”:

α(wi−1) = 1−
∑
w

Count∗(wi−1, w)

Count(wi−1)

e.g., in our example, α(the) = 10× 0.5/48 = 5/48



Katz Back-Off Models (Bigrams)
I For a bigram model, define two sets

A(wi−1) = {w : Count(wi−1, w) > 0}
B(wi−1) = {w : Count(wi−1, w) = 0}

I A bigram model

qBO(wi | wi−1) =


Count∗(wi−1,wi)

Count(wi−1)
If wi ∈ A(wi−1)

α(wi−1)
qML(wi)∑

w∈B(wi−1)
qML(w)

If wi ∈ B(wi−1)

where

α(wi−1) = 1−
∑

w∈A(wi−1)

Count∗(wi−1, w)

Count(wi−1)



Katz Back-Off Models (Trigrams)
I For a trigram model, first define two sets

A(wi−2, wi−1) = {w : Count(wi−2, wi−1, w) > 0}
B(wi−2, wi−1) = {w : Count(wi−2, wi−1, w) = 0}

I A trigram model is defined in terms of the bigram model:

qBO(wi | wi−2, wi−1) =



Count∗(wi−2,wi−1,wi)

Count(wi−2,wi−1)

If wi ∈ A(wi−2, wi−1)

α(wi−2,wi−1)qBO(wi|wi−1)∑
w∈B(wi−2,wi−1)

qBO(w|wi−1)

If wi ∈ B(wi−2, wi−1)

where

α(wi−2, wi−1) = 1−
∑

w∈A(wi−2,wi−1)

Count∗(wi−2, wi−1, w)

Count(wi−2, wi−1)



Summary

I Three steps in deriving the language model probabilities:

1. Expand p(w1, w2 . . . wn) using Chain rule.
2. Make Markov Independence Assumptions

p(wi | w1, w2 . . . wi−2, wi−1) = p(wi | wi−2, wi−1)
3. Smooth the estimates using low order counts.

I Other methods used to improve language models:

I “Topic” or “long-range” features.
I Syntactic models.

It’s generally hard to improve on trigram models though!!


