# Computational Graphs, and Backpropagation

Michael Collins, Columbia University

# A Key Problem: Calculating Derivatives

$$p(y|x;\theta,v) = \frac{\exp\left(v(y) \cdot \phi(x;\theta) + \gamma_y\right)}{\sum_{y' \in \mathcal{Y}} \exp\left(v(y') \cdot \phi(x;\theta) + \gamma_{y'}\right)}$$
(1)

where

$$\phi(x;\theta) = g(Wx+b)$$

and

- $\blacktriangleright$  *m* is an integer specifying the number of hidden units
- $W \in \mathbb{R}^{m \times d}$  and  $b \in \mathbb{R}^m$  are the parameters in  $\theta$ .  $g : \mathbb{R}^m \to \mathbb{R}^m$  is the transfer function
- $\blacktriangleright$  Key question, given a training example  $(x^i,y^i),$  define

$$L(\theta, v) = -\log p(y_i | x_i; \theta, v)$$

How do we calculate derivatives such as  $\frac{dL(\theta,v)}{dW_{k,j}}$ ?

# A Simple Version of Stochastic Gradient Descent (Continued)

#### Algorithm:

- For  $t = 1 \dots T$ 
  - Select an integer i uniformly at random from  $\{1 \dots n\}$
  - Define  $L(\theta, v) = -\log p(y_i|x_i; \theta, v)$
  - For each parameter  $\theta_j$ ,  $\theta_j = \theta_j \eta^t \times \frac{dL(\theta,v)}{d\theta_j}$
  - ► For each label y, for each parameter  $v_k(y)$ ,  $v_k(y) = v_k(y) - \eta^t \times \frac{dL(\theta, v)}{dv_k(y)}$
  - For each label y,  $\gamma_y = \gamma_y \eta^t \times \frac{dL(\theta, v)}{d\gamma_y}$

**Output:** parameters  $\theta$  and v

#### Overview

- Introduction
- ► The chain rule
- Derivatives in a single-layer neural network
- Computational graphs
- Backpropagation in computational graphs
- Justification for backpropagation

#### Partial Derivatives

Assume we have scalar variables  $z_1, z_2 \dots z_n$ , and y, and a function f, and we define

$$y = f(z_1, z_2, \dots z_n)$$

Then the *partial derivative* of f with respect to  $z_i$  is written as

$$\frac{\partial f(z_1, z_2, \dots z_n)}{\partial z_i}$$

We will also write the partial derivative as

$$\left.\frac{\partial y}{\partial z_i}\right|_{z_1\dots z_m}^f$$

which can be read as "the partial derivative of y with respect to  $z_i$ , under function f, at values  $z_1 \dots z_m$ "

## Partial Derivatives (continued)

We will also write the partial derivative as

$$\left. \frac{\partial y}{\partial z_i} \right|_{z_1 \dots z_m}^f$$

which can be read as "the partial derivative of y with respect to  $z_i$ , under function f, at values  $z_1 \dots z_m$ "

The notation including f is non-standard, but helps to alleviate a lot of potential confusion...

We will sometimes drop f and/or  $z_1 \dots z_m$  when this is clear from context

#### The Chain Rule

#### Assume we have equations

$$y = f(z),$$
  $z = g(x)$   
 $h(x) = f(g(x))$ 

Then

$$\frac{dh(x)}{dx} = \frac{df(g(x))}{dz} \times \frac{dg(x)}{dx}$$

Or equivalently,

$$\frac{\partial y}{\partial x}\Big|_{x}^{h} = \frac{\partial y}{\partial z}\Big|_{g(x)}^{f} \times \frac{\partial z}{\partial x}\Big|_{x}^{g}$$

#### The Chain Rule

Assume we have equations

$$y = f(z), \qquad z = g(x)$$
  
 $h(x) = f(g(x))$ 

then

$$\frac{dh(x)}{dx} = \frac{df(g(x))}{dz} \times \frac{dg(x)}{dx}$$

For example, assume  $f(z) = z^2$  and  $g(x) = x^3$ . Assume in addition that x = 2. Then:

$$z = x^3 = 8$$
,  $\frac{dg(x)}{dx} = 3x^2 = 12$ ,  $f(z) = z^2 = 64$ ,  $\frac{df(z)}{dz} = 2z = 16$ 

from which it follows that  $\frac{dh(x)}{dx} = 12 \times 16 = 192$ 

### The Chain Rule (continued)

Assume we have equations

$$y = f(z)$$

$$z_1 = g_1(x), z_2 = g_2(x), \dots, z_n = g_n(x)$$

For some functions f,  $g_1 \ldots g_n$ , where z is a vector  $z \in \mathbb{R}^n$ , and x is a vector  $x \in \mathbb{R}^m$ . Define the function

$$h(x) = f(g_1(x), g_2(x), \dots, g_n(x))$$

Then we have

$$\frac{\partial h(x)}{\partial x_j} = \sum_i \frac{\partial f(z)}{\partial z_i} \frac{\partial g_i(x)}{\partial x_j}$$

where z is the vector  $g_1(x), g_2(x), \ldots g_n(x)$ .

#### The Jacobian Matrix

Assume we have a function  $f : \mathbb{R}^n \to \mathbb{R}^m$  that takes some vector  $x \in \mathbb{R}^n$  and then returns a vector  $y \in \mathbb{R}^m$ :

$$y = f(x)$$

The Jacobian  $J \in \mathbb{R}^{m \times n}$  is defined as the matrix with entries

$$J_{i,j} = \frac{\partial f_i(x)}{\partial x_j}$$

Hence the Jacobian contains all partial derivatives of the function.

#### The Jacobian Matrix

Assume we have a function  $f : \mathbb{R}^n \to \mathbb{R}^m$  that takes some vector  $x \in \mathbb{R}^n$  and then returns a vector  $y \in \mathbb{R}^m$ :

$$y = f(x)$$

The Jacobian  $J \in \mathbb{R}^{m \times n}$  is defined as the matrix with entries

$$J_{i,j} = \frac{\partial f_i(x)}{\partial x_j}$$

Hence the Jacobian contains all partial derivatives of the function. We will also use  $\frac{\partial y}{\partial x}\Big|^f$ 

for vectors y and x to refer to the Jacobian matrix with respect to a function f mapping x to y, evaluated at x

# An Example of the Jacobian: The LOG-SOFTMAX Function

We define LS :  $\mathbb{R}^K \to \mathbb{R}^K$  to be the function such that for  $k = 1 \dots K$ ,

$$\mathsf{LS}_k(l) = \log\left(\frac{\exp\{l_k\}}{\sum_{k'} \exp\{l_{k'}\}}\right) = l_k - \log\sum_{k'} \exp\{l_{k'}\}$$

The Jacobian then has entries

$$\left[\frac{\partial \mathsf{LS}(l)}{\partial l}\right]_{k,k'} = \frac{\partial \mathsf{LS}_k(l)}{\partial l_{k'}} = \left[\left[k = k'\right]\right] - \frac{\exp\{l_{k'}\}}{\sum_{k''} \exp\{l_{k''}\}}$$

where [[k = k']] = 1 if k = k', 0 otherwise.

## The Chain Rule (continued)

Assume we have equations

$$y = f(z^1, z^2, \dots z^n)$$
$$z^i = q^i(x^1, x^2, \dots x^m)$$

for  $i = 1 \dots n$  where y is a vector,  $z^i$  for all i are vectors, and  $x^j$  for all j are vectors. Define  $h(x^1 \dots x^m)$  to be the composition of f and g, so  $y = h(x^1 \dots x^m)$ . Then



where d(v) is the dimensionality of vector v.

#### Overview

- Introduction
- ► The chain rule
- Derivatives in a single-layer neural network
- Computational graphs
- Backpropagation in computational graphs
- Justification for backpropagation

#### Derivatives in a Feedforward Network

Definitions: The set of possible labels is  $\mathcal{Y}$ . We define  $K = |\mathcal{Y}|$ .  $g : \mathbb{R}^m \to \mathbb{R}^m$  is a transfer function. We define  $\mathsf{LS} = \mathsf{LOG}\text{-}\mathsf{SOFTMAX}$ .

Inputs:  $x^i \in \mathbb{R}^d, y^i \in \mathcal{Y}, W \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m, V \in \mathbb{R}^{K \times m}, \gamma \in \mathbb{R}^K$ . Equations:

$$z \in \mathbb{R}^{m} = Wx^{i} + b$$
  

$$h \in \mathbb{R}^{m} = g(z)$$
  

$$l \in \mathbb{R}^{K} = Vh + \gamma$$
  

$$q \in \mathbb{R}^{K} = \mathsf{LS}(l)$$
  

$$o \in \mathbb{R} = -q_{y_{i}}$$

## Jacobian Involving Matrices

Equations:

$$z \in \mathbb{R}^{m} = Wx^{i} + b$$
$$h \in \mathbb{R}^{m} = g(z)$$
$$l \in \mathbb{R}^{K} = Vh + \gamma$$
$$q \in \mathbb{R}^{K} = \mathsf{LS}(l)$$
$$o \in \mathbb{R} = -q_{y_{i}}$$

If  $W \in \mathbb{R}^{m \times d}$ ,  $z \in \mathbb{R}^m$ , the Jacobian  $\frac{\partial z}{\partial W}$ is a matrix of dimension  $m \times m'$  where  $m' = (m \times d)$  is the number of entries in W. So we treat W as a vector with  $(m \times d)$ 

number of entries in W. So we treat W as a elements.

#### Local Functions

Equations:

$$z \in \mathbb{R}^{m} = Wx^{i} + b$$
  

$$h \in \mathbb{R}^{m} = g(z)$$
  

$$l \in \mathbb{R}^{K} = Vh + \gamma$$
  

$$q \in \mathbb{R}^{K} = \mathsf{LS}(l)$$
  

$$o \in \mathbb{R} = -q_{y_{i}}$$

Leaf variables: W,  $x^i$ , b, V,  $\gamma$ ,  $y_i$ Intermediate variables: z, h, l, qOutput variable: o

Each intermediate variable has a "Local" function:

$$f^{z}(W, x^{i}, b) = Wx^{i} + b, \quad f^{h}(z) = g(z), \quad f^{l}(h) = Vh + \gamma, \quad \dots$$

#### **Global Functions**

#### Equations:

$$z \in \mathbb{R}^{m} = Wx^{i} + b$$

$$h \in \mathbb{R}^{m} = g(z)$$

$$l \in \mathbb{R}^{K} = Vh + \gamma$$

$$q \in \mathbb{R}^{K} = \mathsf{LS}(l)$$

$$o \in \mathbb{R} = -q_{y_{i}}$$

Leaf variables: W,  $x^i$ , b, V,  $\gamma$ ,  $y_i$ Intermediate variables: z, h, l, qOutput variable: o

Global functions: for the output variable o, we define  $\bar{f}^o$  to be the function that maps the leaf values W,  $x^i$ , b, V,  $\gamma$ ,  $y_i$  to the output value  $o = \bar{f}^o(W, x^i, b, V, \gamma, y_i)$ . We use similar definitions for  $\bar{f}^z(W, x^i, b, V, \gamma, y_i)$ ,  $\bar{f}^h(W, x^i, b, V, \gamma, y_i)$ , etc.

#### Derivative:

Equations:

$$\left. \frac{\partial o}{\partial W} \right|^{\bar{f}^o} =$$

$$z \in \mathbb{R}^{m} = Wx^{i} + b$$
  

$$h \in \mathbb{R}^{m} = g(z)$$
  

$$l \in \mathbb{R}^{K} = Vh + \gamma$$
  

$$q \in \mathbb{R}^{K} = \mathsf{LS}(l)$$
  

$$o \in \mathbb{R} = -q_{y_{i}}$$

000

Derivative:

Equations:

$$\frac{\partial o}{\partial W}\Big|^{\bar{f}^o} = \frac{\partial o}{\partial q}\Big|^{f^o} \times \frac{\partial q}{\partial W}\Big|^{\bar{f}^q}$$
$$-b$$
$$\gamma$$

$$z \in \mathbb{R}^{m} = Wx^{i} + l$$
  

$$h \in \mathbb{R}^{m} = g(z)$$
  

$$l \in \mathbb{R}^{K} = Vh + \gamma$$
  

$$q \in \mathbb{R}^{K} = \mathsf{LS}(l)$$
  

$$o \in \mathbb{R} = -q_{y_{i}}$$

Derivative:

Equations:

$$\frac{\partial o}{\partial W}\Big|^{\bar{f}^o} = \frac{\partial o}{\partial q}\Big|^{f^o} \times \frac{\partial q}{\partial W}\Big|^{\bar{f}^q}$$
$$= \frac{\partial o}{\partial q}\Big|^{f^o} \times \frac{\partial q}{\partial l}\Big|^{f^q} \times \frac{\partial l}{\partial W}\Big|^{\bar{f}^l}$$

 $z \in \mathbb{R}^{m} = Wx^{i} + b$   $h \in \mathbb{R}^{m} = g(z)$   $l \in \mathbb{R}^{K} = Vh + \gamma$   $q \in \mathbb{R}^{K} = \mathsf{LS}(l)$  $o \in \mathbb{R} = -q_{u_{i}}$ 

Derivative:

Equations:

 $z \in \mathbb{R}^{m} = Wx^{i} + b$   $h \in \mathbb{R}^{m} = g(z)$   $l \in \mathbb{R}^{K} = Vh + \gamma$   $q \in \mathbb{R}^{K} = \mathsf{LS}(l)$   $o \in \mathbb{R} = -q_{y_{i}}$ 

$$\begin{aligned} \frac{\partial o}{\partial W} \Big|^{\bar{f}^{o}} &= \left. \frac{\partial o}{\partial q} \right|^{f^{o}} \times \left. \frac{\partial q}{\partial W} \right|^{\bar{f}^{q}} \\ &= \left. \frac{\partial o}{\partial q} \right|^{f^{o}} \times \left. \frac{\partial q}{\partial l} \right|^{f^{q}} \times \left. \frac{\partial l}{\partial W} \right|^{\bar{f}^{l}} \\ &= \left. \frac{\partial o}{\partial q} \right|^{f^{o}} \times \left. \frac{\partial q}{\partial l} \right|^{f^{q}} \times \left. \frac{\partial l}{\partial h} \right|^{f^{l}} \times \left. \frac{\partial h}{\partial W} \right|^{\bar{f}^{h}} \end{aligned}$$

Derivative:

 $\overline{\partial W}$ 

Equations:

 $z \in \mathbb{R}^m = Wx^i + b$  $h \in \mathbb{R}^m = g(z)$  $l \in \mathbb{R}^K = Vh + \gamma$  $q \in \mathbb{R}^{K} = \mathsf{LS}(l)$  $o \in \mathbb{R} = -q_{u_i}$ 

$$\begin{split} \frac{\partial o}{\partial W} \Big|^{\bar{f}^{o}} &= \left. \frac{\partial o}{\partial q} \right|^{f^{o}} \times \left. \frac{\partial q}{\partial W} \right|^{\bar{f}^{q}} \\ &= \left. \frac{\partial o}{\partial q} \right|^{f^{o}} \times \left. \frac{\partial q}{\partial l} \right|^{f^{q}} \times \left. \frac{\partial l}{\partial W} \right|^{\bar{f}^{l}} \\ &= \left. \frac{\partial o}{\partial q} \right|^{f^{o}} \times \left. \frac{\partial q}{\partial l} \right|^{f^{q}} \times \left. \frac{\partial l}{\partial h} \right|^{f^{l}} \times \left. \frac{\partial h}{\partial W} \right|^{\bar{f}^{h}} \\ &= \left. \frac{\partial o}{\partial q} \right|^{f^{o}} \times \left. \frac{\partial q}{\partial l} \right|^{f^{q}} \times \left. \frac{\partial l}{\partial h} \right|^{f^{l}} \times \left. \frac{\partial h}{\partial Z} \right|^{f^{h}} \times \left. \frac{\partial z}{\partial W} \right|^{\bar{f}^{z}} \end{split}$$

Derivative:

 $\left.\frac{\partial o}{\partial W}\right|^{\bar{f}^o}$ 

Equations:

 $z \in \mathbb{R}^{m} = Wx^{i} + b$  $h \in \mathbb{R}^{m} = g(z)$  $l \in \mathbb{R}^{K} = Vh + \gamma$  $q \in \mathbb{R}^{K} = \mathsf{LS}(l)$  $o \in \mathbb{R} = -q_{y_{i}}$ 

$$= \frac{\partial o}{\partial q} \Big|_{f^{o}}^{f^{o}} \times \frac{\partial q}{\partial W} \Big|_{f^{q}}^{\bar{f}^{q}}$$

$$= \frac{\partial o}{\partial q} \Big|_{f^{o}}^{f^{o}} \times \frac{\partial q}{\partial l} \Big|_{f^{q}}^{f^{q}} \times \frac{\partial l}{\partial W} \Big|_{f^{l}}^{\bar{f}^{l}}$$

$$= \frac{\partial o}{\partial q} \Big|_{f^{o}}^{f^{o}} \times \frac{\partial q}{\partial l} \Big|_{f^{q}}^{f^{q}} \times \frac{\partial l}{\partial h} \Big|_{f^{l}}^{f^{l}} \times \frac{\partial h}{\partial W} \Big|_{f^{h}}^{\bar{f}^{h}}$$

$$= \frac{\partial o}{\partial q} \Big|_{f^{o}}^{f^{o}} \times \frac{\partial q}{\partial l} \Big|_{f^{q}}^{f^{q}} \times \frac{\partial l}{\partial h} \Big|_{f^{l}}^{f^{l}} \times \frac{\partial h}{\partial z} \Big|_{f^{h}}^{f^{h}} \times \frac{\partial z}{\partial W} \Big|_{f^{z}}^{\bar{f}^{z}}$$

$$= \frac{\partial o}{\partial q} \Big|_{f^{o}}^{f^{o}} \times \frac{\partial q}{\partial l} \Big|_{f^{q}}^{f^{q}} \times \frac{\partial l}{\partial h} \Big|_{f^{l}}^{f^{l}} \times \frac{\partial h}{\partial z} \Big|_{f^{h}}^{f^{h}} \times \frac{\partial z}{\partial W} \Big|_{f^{z}}^{f^{z}}$$

#### Another Derivative

#### Equations:

 $z \in \mathbb{R}^{m} = Wx^{i} + b$  $h \in \mathbb{R}^{m} = g(z)$  $l \in \mathbb{R}^{K} = Vh + \gamma$  $q \in \mathbb{R}^{K} = \mathsf{LS}(l)$  $o \in \mathbb{R} = -q_{u_{i}}$ 

$$\left. \frac{\partial o}{\partial V} \right|^{\bar{f}^o} = \left. \frac{\partial o}{\partial q} \right|^{f^o} \times \left. \frac{\partial q}{\partial l} \right|^{f^q} \times \left. \frac{\partial l}{\partial v} \right|^{f^l}$$

# A Computational Graph

Equations:

$$z \in \mathbb{R}^{m} = Wx^{i} + b$$

$$h \in \mathbb{R}^{m} = g(z)$$

$$l \in \mathbb{R}^{K} = Vh + \gamma$$

$$q \in \mathbb{R}^{K} = \mathsf{LS}(l)$$

$$o \in \mathbb{R} = -q_{y_{i}}$$

Derivatives:

$$\frac{\partial o}{\partial V} \Big|_{\phantom{a}}^{\bar{f}^{o}} = \frac{\partial o}{\partial q} \Big|_{\phantom{a}}^{f^{o}} \times \frac{\partial q}{\partial l} \Big|_{\phantom{a}}^{f^{q}} \times \frac{\partial l}{\partial v} \Big|_{\phantom{a}}^{f^{l}}$$
$$\frac{\partial o}{\partial W} \Big|_{\phantom{a}}^{\bar{f}^{o}} = \frac{\partial o}{\partial q} \Big|_{\phantom{a}}^{f^{o}} \times \frac{\partial q}{\partial l} \Big|_{\phantom{a}}^{f^{q}} \times \frac{\partial l}{\partial h} \Big|_{\phantom{a}}^{f^{l}} \times \frac{\partial h}{\partial z} \Big|_{\phantom{a}}^{f^{h}} \times \frac{\partial z}{\partial W} \Big|_{\phantom{a}}^{f^{z}}$$

#### Overview

- Introduction
- ► The chain rule
- Derivatives in a single-layer neural network
- Computational graphs
- Backpropagation in computational graphs
- Justification for backpropagation

#### Computational Graphs: a Formal Definition

A computational graph consists of:

- An integer n specifying the number of vertices in the graph. An integer l < n specifying the number of leaves in the graph. Vertices 1...l are leaves in the graph. Vertex n is a special "output" vertex.
- A set of directed edges E. Each member of E is an ordered pair (j, i) where j ∈ {1...n}, i ∈ {(l + 1)...n}, and i > j. For any i we define π(i) to be the set of parents of i in the graph:

$$\pi(i) = \{ j : (j, i) \in E \}$$

## Computational Graphs (continued)

- A variable u<sup>i</sup> ∈ ℝ<sup>d<sub>i</sub></sup> is associated with each vertex in the graph. Here d<sub>i</sub> for i = 1...n specifies the dimensionality of u<sup>i</sup>. We assume d<sub>n</sub> = 1, hence the output variable is a scalar.
- A function f<sup>i</sup> is associated with each non-leaf vertex in the graph (i ∈ {(l + 1)...n}). The function maps a vector A<sup>i</sup> defined as

$$A^i = \langle u^j | j \in \pi(i) \rangle$$

to a vector  $f^i(A^i) \in \mathbb{R}^{d_i}$ 

#### An Example

- ▶ Define n = 4, l = 2
- Define  $d_i = 1$  for all *i* (all variables are scalars)
- Define  $E = \{(1,3), (2,3), (2,4), (3,4)\}$
- Define

$$f^{3}(u^{1}, u^{2}) = u^{1} + u^{2}$$
$$f^{4}(u^{2}, u^{3}) = u^{2} \times u^{3}$$

#### Two Questions

Note that the computational graph defines a function, which we call f<sup>n</sup>, from the values of the leaf variables to the output variable:

$$u^n = \bar{f}^n(u^1 \dots u^l)$$

- Given a computational graph, and values for the leaf variables  $u^1 \dots u^l$ :
  - 1. How do we compute the output  $u^n$ ?
  - 2. How do we compute the partial derivatives

$$\left. \frac{\partial u^n}{\partial u^i} \right|^{\bar{f}^n}$$

for all  $i \in \{1 \dots l\}$  ?

**Input:** Values for leaf variables  $u^1 \dots u^l$ **Algorithm:** 

▶ For 
$$i = (l+1) \dots n$$
  
 $u^i = f^i(A^i)$ 

where

$$A^i = \langle u^j | j \in \pi(i) \rangle$$

#### An Example

- ▶ Define n = 4, l = 2
- Define  $d_i = 1$  for all *i* (all variables are scalars)
- Define  $E = \{(1,3), (2,3), (2,4), (3,4)\}$
- Define

$$f^{3}(u^{1}, u^{2}) = u^{1} + u^{2}$$
$$f^{4}(u^{2}, u^{3}) = u^{2} \times u^{3}$$

#### Defining and Calculating Derivatives

For any 
$$k \in \{(l+1) \dots n\}$$
, there is a function  $\bar{f}^k$  such that

$$u^k = \bar{f}^k(u^1, u^2, \dots u^l)$$

► We want to calculate

$$\left.\frac{\partial u^n}{\partial u^j}\right|_{u^1\dots u^l}^{\bar{f}^n}$$

for  $j = 1 \dots l$ 

## Computational Graphs (continued)

• A function  $J^{j \to i}$  is associated with each edge  $(j, i) \in E$ . The function maps a vector  $A^i$  defined as

$$A^i = \langle u^j | j \in \pi(i) \rangle$$

to a matrix  $J^{j \to i}(A^i) \in \mathbb{R}^{d_i \times d_j}$ .

$$J^{j \to i}(A^i) = \frac{\partial f^i(A^i)}{\partial u^j} = \left. \frac{\partial u^i}{\partial u^j} \right|_{A^i}^{f^i}$$

#### Forward Pass

#### **Input:** Values for leaf variables $u^1 \dots u^l$ **Algorithm:**

• For 
$$i = (l+1) \dots n$$

$$A^{i} = \langle u^{j} | j \in \pi(i) \rangle$$
$$u^{i} = f^{i}(A^{i})$$

#### Backward Pass

▶ 
$$p^n = 1$$
  
▶ For  $j = (n - 1) \dots 1$ :  

$$p^j = \sum_{i:(j,i) \in E} p^i J^{j \to i}(A^i)$$

• **Output:**  $p^i$  for  $i = 1 \dots l$  satisfying

$$p^{i} = \left. \frac{\partial o}{\partial u^{i}} \right|_{u^{1} \dots u^{l}}^{\bar{f}^{n}}$$

# An Example

$$p^{n} = 1$$
  
For  $j = (n - 1) \dots 1$ :  
$$p^{j} = \sum_{i:(j,i) \in E} p^{i} J^{j \to i} (A^{i}$$

)

#### Overview

- Introduction
- ► The chain rule
- Derivatives in a single-layer neural network
- Computational graphs
- Backpropagation in computational graphs
- Justification for backpropagation

#### Products of Jacobians over Paths in the Graph

- A directed path between vertices j and k is a sequence of edges (i<sub>1</sub>, i<sub>2</sub>), (i<sub>2</sub>, i<sub>3</sub>), ... (i<sub>n-1</sub>, i<sub>n</sub>) with n ≥ 2 such that each edge is in E, and i<sub>1</sub> = j, and i<sub>n</sub> = k.
- For any j, k, we write P(j, k) to denote the set of all directed paths between j and k
- For convenience we define  $D^{a \to b} = J^{a \to b}(A^b)$  for all edges (a, b).
- Theorem: for any  $j \in \{1 \dots l\}$ ,  $k \in \{(l+1) \dots n\}$ ,

$$\left.\frac{\partial u^k}{\partial u^j}\right|^{\bar{f}^k} = \sum_{p\in \mathcal{P}(j,k)} \prod_{(a,b)\in p} D^{a\to b}$$

#### An Example



## Proof Sketch

- ► For any j, j', k, we write P(j, j', k) to denote the set of all directed paths between j and k such that the last edge in the sequence is (j', k).
- Proof sketch: By induction over the graph. By the chain rule we have

$$\frac{\partial u^k}{\partial u^j}\Big|^{\bar{f}^k} = \sum_{\substack{j':(j',k)\in E}} D^{j'\to k} \times \frac{\partial u^{j'}}{\partial u^j}\Big|^{\bar{f}^{j'}}$$
$$= \sum_{\substack{j':(j',k)\in E}} D^{j'\to k} \times \sum_{p\in\mathcal{P}(j,j')} \prod_{(a,b)\in p} D^{a\to b}$$
$$= \sum_{\substack{j':(j',k)\in E}} \sum_{p\in\mathcal{P}(j,j',k)} \prod_{(a,b)\in p} D^{a\to b}$$
$$= \sum_{p\in\mathcal{P}(j,k)} \prod_{(a,b)\in p} D^{a\to b}$$

#### Backward Pass

▶ 
$$p^n = 1$$
  
▶ For  $j = (n - 1) \dots 1$ :  
 $p^j = \sum p^i D^{j \to i}$ 

$$i:(\overline{j,i})\in E$$

• **Output:**  $p^i$  for  $i = 1 \dots l$  satisfying

$$p^{i} = \left. \frac{\partial o}{\partial u^{i}} \right|_{u^{1}, u^{2}, \dots u^{l}}^{\bar{f}^{o}}$$

#### Correctness of the Backward Pass

• Theorem: For all  $p^i$  we have

$$p^{i} = \sum_{p \in \mathcal{P}(i,n)} \prod_{(a,b) \in p} D^{a \to b}$$

It follows that for any  $i \in \{1 \dots l\}$ ,

$$p^i = \left. \frac{\partial u^n}{\partial u^i} \right|^{\bar{f}^n}$$

#### Proof

• Theorem: For all  $p^i$  we have

$$p^{i} = \sum_{p \in \mathcal{P}(i,n)} \prod_{(a,b) \in p} D^{a \to b}$$

▶ Proof sketch: by induction on  $i = n, i = (n - 1), i = (n - 2), \ldots i = 1$ . For i = n we have  $p^n = 1$  so the proposition is true. For  $j = (n - 1) \ldots 1$  we have

$$p^{j} = \sum_{i:(j,i)\in E} p^{i} D^{j\to i}$$
$$= \sum_{i:(j,i)\in E} \left( \sum_{p\in\mathcal{P}(i,n)} \prod_{(a,b)\in p} D^{a\to b} \right) D^{j\to i} = \sum_{p\in\mathcal{P}(j,n)} \prod_{(a,b)\in p} D^{a\to b}$$