# Computational Graphs, and Backpropagation 

Michael Collins, Columbia University

## A Key Problem: Calculating Derivatives

$$
\begin{equation*}
p(y \mid x ; \theta, v)=\frac{\exp \left(v(y) \cdot \phi(x ; \theta)+\gamma_{y}\right)}{\sum_{y^{\prime} \in \mathcal{Y}} \exp \left(v\left(y^{\prime}\right) \cdot \phi(x ; \theta)+\gamma_{y^{\prime}}\right)} \tag{1}
\end{equation*}
$$

where

$$
\phi(x ; \theta)=g(W x+b)
$$

and

- $m$ is an integer specifying the number of hidden units
- $W \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^{m}$ are the parameters in $\theta$. $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the transfer function
- Key question, given a training example $\left(x^{i}, y^{i}\right)$, define

$$
L(\theta, v)=-\log p\left(y_{i} \mid x_{i} ; \theta, v\right)
$$

How do we calculate derivatives such as $\frac{d L(\theta, v)}{d W_{k, j}}$ ?

## A Simple Version of Stochastic Gradient Descent (Continued)

## Algorithm:

- For $t=1 \ldots T$
- Select an integer $i$ uniformly at random from $\{1 \ldots n\}$
- Define $L(\theta, v)=-\log p\left(y_{i} \mid x_{i} ; \theta, v\right)$
- For each parameter $\theta_{j}, \theta_{j}=\theta_{j}-\eta^{t} \times \frac{d L(\theta, v)}{d \theta_{j}}$
- For each label $y$, for each parameter $v_{k}(y)$,
$v_{k}(y)=v_{k}(y)-\eta^{t} \times \frac{d L(\theta, v)}{d v_{k}(y)}$
- For each label $y, \gamma_{y}=\gamma_{y}-\eta^{t} \times \frac{d L(\theta, v)}{d \gamma_{y}}$

Output: parameters $\theta$ and $v$

## Overview

- Introduction
- The chain rule
- Derivatives in a single-layer neural network
- Computational graphs
- Backpropagation in computational graphs
- Justification for backpropagation


## Partial Derivatives

Assume we have scalar variables $z_{1}, z_{2} \ldots z_{n}$, and $y$, and a function $f$, and we define

$$
y=f\left(z_{1}, z_{2}, \ldots z_{n}\right)
$$

Then the partial derivative of $f$ with respect to $z_{i}$ is written as

$$
\frac{\partial f\left(z_{1}, z_{2}, \ldots z_{n}\right)}{\partial z_{i}}
$$

We will also write the partial derivative as

$$
\left.\frac{\partial y}{\partial z_{i}}\right|_{z_{1} \ldots z_{m}} ^{f}
$$

which can be read as "the partial derivative of $y$ with respect to $z_{i}$, under function $f$, at values $z_{1} \ldots z_{m}$ "

## Partial Derivatives (continued)

We will also write the partial derivative as

$$
\left.\frac{\partial y}{\partial z_{i}}\right|_{z_{1} \ldots z_{m}} ^{f}
$$

which can be read as "the partial derivative of $y$ with respect to $z_{i}$, under function $f$, at values $z_{1} \ldots z_{m}{ }^{\prime \prime}$

The notation including $f$ is non-standard, but helps to alleviate a lot of potential confusion...

We will sometimes drop $f$ and/or $z_{1} \ldots z_{m}$ when this is clear from context

## The Chain Rule

Assume we have equations

$$
\begin{gathered}
y=f(z), \quad z=g(x) \\
h(x)=f(g(x))
\end{gathered}
$$

Then

$$
\frac{d h(x)}{d x}=\frac{d f(g(x))}{d z} \times \frac{d g(x)}{d x}
$$

Or equivalently,

$$
\left.\frac{\partial y}{\partial x}\right|_{x} ^{h}=\left.\frac{\partial y}{\partial z}\right|_{g(x)} ^{f} \times\left.\frac{\partial z}{\partial x}\right|_{x} ^{g}
$$

## The Chain Rule

Assume we have equations

$$
\begin{gathered}
y=f(z), \quad z=g(x) \\
h(x)=f(g(x))
\end{gathered}
$$

then

$$
\frac{d h(x)}{d x}=\frac{d f(g(x))}{d z} \times \frac{d g(x)}{d x}
$$

For example, assume $f(z)=z^{2}$ and $g(x)=x^{3}$. Assume in addition that $x=2$. Then:
$z=x^{3}=8, \quad \frac{d g(x)}{d x}=3 x^{2}=12, \quad f(z)=z^{2}=64, \quad \frac{d f(z)}{d z}=2 z=16$
from which it follows that $\frac{d h(x)}{d x}=12 \times 16=192$

## The Chain Rule (continued)

Assume we have equations

$$
\begin{gathered}
y=f(z) \\
z_{1}=g_{1}(x), z_{2}=g_{2}(x), \ldots, z_{n}=g_{n}(x)
\end{gathered}
$$

For some functions $f, g_{1} \ldots g_{n}$, where $z$ is a vector $z \in \mathbb{R}^{n}$, and $x$ is a vector $x \in \mathbb{R}^{m}$.
Define the function

$$
h(x)=f\left(g_{1}(x), g_{2}(x), \ldots g_{n}(x)\right)
$$

Then we have

$$
\frac{\partial h(x)}{\partial x_{j}}=\sum_{i} \frac{\partial f(z)}{\partial z_{i}} \frac{\partial g_{i}(x)}{\partial x_{j}}
$$

where $z$ is the vector $g_{1}(x), g_{2}(x), \ldots g_{n}(x)$.

## The Jacobian Matrix

Assume we have a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ that takes some vector $x \in \mathbb{R}^{n}$ and then returns a vector $y \in \mathbb{R}^{m}$ :

$$
y=f(x)
$$

The Jacobian $J \in \mathbb{R}^{m \times n}$ is defined as the matrix with entries

$$
J_{i, j}=\frac{\partial f_{i}(x)}{\partial x_{j}}
$$

Hence the Jacobian contains all partial derivatives of the function.

## The Jacobian Matrix

Assume we have a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ that takes some vector $x \in \mathbb{R}^{n}$ and then returns a vector $y \in \mathbb{R}^{m}$ :

$$
y=f(x)
$$

The Jacobian $J \in \mathbb{R}^{m \times n}$ is defined as the matrix with entries

$$
J_{i, j}=\frac{\partial f_{i}(x)}{\partial x_{j}}
$$

Hence the Jacobian contains all partial derivatives of the function. We will also use

$$
\left.\frac{\partial y}{\partial x}\right|_{x} ^{f}
$$

for vectors $y$ and $x$ to refer to the Jacobian matrix with respect to a function $f$ mapping $x$ to $y$, evaluated at $x$

## An Example of the Jacobian: The LOG-SOFTMAX

## Function

We define LS : $\mathbb{R}^{K} \rightarrow \mathbb{R}^{K}$ to be the function such that for $k=1 \ldots K$,

$$
\mathrm{LS}_{k}(l)=\log \left(\frac{\exp \left\{l_{k}\right\}}{\sum_{k^{\prime}} \exp \left\{l_{k^{\prime}}\right\}}\right)=l_{k}-\log \sum_{k^{\prime}} \exp \left\{l_{k^{\prime}}\right\}
$$

The Jacobian then has entries

$$
\left[\frac{\partial \mathrm{LS}(l)}{\partial l}\right]_{k, k^{\prime}}=\frac{\partial \mathrm{LS} S_{k}(l)}{\partial l_{k^{\prime}}}=\left[\left[k=k^{\prime}\right]\right]-\frac{\exp \left\{l_{k^{\prime}}\right\}}{\sum_{k^{\prime \prime}} \exp \left\{l_{k^{\prime \prime}}\right\}}
$$

where $\left[\left[k=k^{\prime}\right]\right]=1$ if $k=k^{\prime}, 0$ otherwise.

## The Chain Rule (continued)

Assume we have equations

$$
\begin{aligned}
y & =f\left(z^{1}, z^{2}, \ldots z^{n}\right) \\
z^{i} & =g^{i}\left(x^{1}, x^{2}, \ldots x^{m}\right)
\end{aligned}
$$

for $i=1 \ldots n$ where $y$ is a vector, $z^{i}$ for all $i$ are vectors, and $x^{j}$ for all $j$ are vectors. Define $h\left(x^{1} \ldots x^{m}\right)$ to be the composition of $f$ and $g$, so $y=h\left(x^{1} \ldots x^{m}\right)$. Then

$$
\underbrace{\left.\frac{\partial y}{\partial x^{j}}\right|^{h}}_{d(y) \times d\left(x^{j}\right)}=\sum_{i=1}^{n} \underbrace{\left.\frac{\partial y}{\partial z^{i}}\right|^{f}}_{d(y) \times d\left(z^{i}\right)} \times \underbrace{\left.\frac{\partial z^{i}}{\partial x_{j}}\right|^{g^{i}}}_{d\left(z^{i}\right) \times d\left(x^{j}\right)}
$$

where $d(v)$ is the dimensionality of vector $v$.

## Overview

- Introduction
- The chain rule
- Derivatives in a single-layer neural network
- Computational graphs
- Backpropagation in computational graphs
- Justification for backpropagation


## Derivatives in a Feedforward Network

Definitions: The set of possible labels is $\mathcal{Y}$. We define $K=|\mathcal{Y}|$. $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is a transfer function. We define LS $=$ LOG-SOFTMAX .

Inputs: $x^{i} \in \mathbb{R}^{d}, y^{i} \in \mathcal{Y}, W \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}, V \in \mathbb{R}^{K \times m}, \gamma \in \mathbb{R}^{K}$.
Equations:

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\operatorname{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

## Jacobian Involving Matrices

Equations:

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\mathrm{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

If $W \in \mathbb{R}^{m \times d}, z \in \mathbb{R}^{m}$, the Jacobian

$$
\frac{\partial z}{\partial W}
$$

is a matrix of dimension $m \times m^{\prime}$ where $m^{\prime}=(m \times d)$ is the number of entries in $W$. So we treat $W$ as a vector with $(m \times d)$ elements.

## Local Functions

## Equations:

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\mathrm{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

Each intermediate variable has a "Local" function:

$$
f^{z}\left(W, x^{i}, b\right)=W x^{i}+b, \quad f^{h}(z)=g(z), \quad f^{l}(h)=V h+\gamma, \quad \ldots
$$

## Global Functions

## Equations:

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\mathrm{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

Leaf variables: $W, x^{i}, b, V, \gamma, y_{i}$ Intermediate variables: $z, h, l, q$

Output variable: o

Global functions: for the output variable $o$, we define $\bar{f} o$ to be the function that maps the leaf values $W, x^{i}, b, V, \gamma, y_{i}$ to the output value $o=\bar{f}^{o}\left(W, x^{i}, b, V, \gamma, y_{i}\right)$. We use similar definitions for $\bar{f}^{z}\left(W, x^{i}, b, V, \gamma, y_{i}\right), \bar{f}^{h}\left(W, x^{i}, b, V, \gamma, y_{i}\right)$, etc.

## Applying the Chain Rule

Derivative:
Equations:

$$
\left.\frac{\partial o}{\partial W}\right|^{\bar{q}_{o}}=
$$

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\mathrm{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

## Applying the Chain Rule

Derivative:
Equations:

$$
\left.\frac{\partial o}{\partial W}\right|^{\bar{f}^{o}}=\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial W}\right|^{\bar{f}^{q}}
$$

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\mathrm{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

## Applying the Chain Rule

Derivative:
Equations:

$$
\begin{aligned}
\left.\frac{\partial o}{\partial W}\right|^{\bar{f}^{o}} & =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial W}\right|^{\bar{f}^{q}} \\
& =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial W}\right|^{\bar{f}^{l}}
\end{aligned}
$$

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\mathrm{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

## Applying the Chain Rule

Derivative:

## Equations:

$$
\begin{aligned}
\left.\frac{\partial o}{\partial W}\right|^{f^{f_{o}}} & =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial W}\right|^{f^{q}} \\
& =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial W}\right|^{f^{l}} \\
& =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial h}\right|^{f^{l}} \times\left.\frac{\partial h}{\partial W}\right|^{\bar{f}^{h}}
\end{aligned}
$$

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\mathrm{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

## Applying the Chain Rule

Derivative:

## Equations:

$$
z \in \mathbb{R}^{m}=W x^{i}+b
$$

$$
h \in \mathbb{R}^{m}=g(z)
$$

$$
l \in \mathbb{R}^{K}=V h+\gamma
$$

$$
q \in \mathbb{R}^{K}=\mathrm{LS}(l)
$$

$$
o \in \mathbb{R}=-q_{y_{i}}
$$

$$
\begin{aligned}
\left.\frac{\partial o}{\partial W}\right|^{\bar{f}^{o}} & =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial W}\right|^{\bar{f}^{q}} \\
& =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial W}\right|^{\bar{f}^{l}} \\
& =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial h}\right|^{f^{l}} \times\left.\frac{\partial h}{\partial W}\right|^{\bar{f}^{h}} \\
& =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial h}\right|^{f^{l}} \times\left.\frac{\partial h}{\partial z}\right|^{f^{h}} \times\left.\frac{\partial z}{\partial W}\right|^{\bar{f}^{z}}
\end{aligned}
$$

## Applying the Chain Rule

Derivative:

## Equations:

$$
z \in \mathbb{R}^{m}=W x^{i}+b
$$

$$
h \in \mathbb{R}^{m}=g(z)
$$

$$
l \in \mathbb{R}^{K}=V h+\gamma
$$

$$
q \in \mathbb{R}^{K}=\mathrm{LS}(l)
$$

$$
o \in \mathbb{R}=-q_{y_{i}}
$$

$$
\begin{aligned}
\left.\frac{\partial o}{\partial W}\right|^{\bar{f}^{o}} & =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial W}\right|^{\bar{f}^{q}} \\
& =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial W}\right|^{f^{l}} \\
& =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial h}\right|^{f^{l}} \times\left.\frac{\partial h}{\partial W}\right|^{\bar{f}^{h}} \\
& =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial h}\right|^{f^{l}} \times\left.\frac{\partial h}{\partial z}\right|^{f^{h}} \times\left.\frac{\partial z}{\partial W}\right|^{\bar{f}^{z}} \\
& =\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial h}\right|^{f^{l}} \times\left.\frac{\partial h}{\partial z}\right|^{f^{h}} \times\left.\frac{\partial z}{\partial W}\right|^{f^{z}}
\end{aligned}
$$

## Another Derivative

## Equations:

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\operatorname{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

$$
\left.\frac{\partial o}{\partial V}\right|^{\bar{f}^{o}}=\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial v}\right|^{f^{l}}
$$

## A Computational Graph

## Equations:

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\mathrm{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

Derivatives:

$$
\begin{aligned}
&\left.\frac{\partial o}{\partial V}\right|^{\bar{f}^{o}}=\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times \frac{\partial q}{\partial l} \\
&\left.\right|^{f^{q}} \times\left.\frac{\partial l}{\partial v}\right|^{f^{l}} \\
&\left.\frac{\partial o}{\partial W}\right|^{\bar{f}^{o}}=\left.\frac{\partial o}{\partial q}\right|^{f^{o}} \times\left.\frac{\partial q}{\partial l}\right|^{f^{q}} \times\left.\frac{\partial l}{\partial h}\right|^{f^{l}} \times\left.\frac{\partial h}{\partial z}\right|^{f^{h}} \times\left.\frac{\partial z}{\partial W}\right|^{f^{z}}
\end{aligned}
$$

## Overview

- Introduction
- The chain rule
- Derivatives in a single-layer neural network
- Computational graphs
- Backpropagation in computational graphs
- Justification for backpropagation


## Computational Graphs: a Formal Definition

A computational graph consists of:

- An integer $n$ specifying the number of vertices in the graph. An integer $l<n$ specifying the number of leaves in the graph. Vertices $1 \ldots l$ are leaves in the graph. Vertex $n$ is a special "output" vertex.
- A set of directed edges $E$. Each member of $E$ is an ordered pair $(j, i)$ where $j \in\{1 \ldots n\}, i \in\{(l+1) \ldots n\}$, and $i>j$. For any $i$ we define $\pi(i)$ to be the set of parents of $i$ in the graph:

$$
\pi(i)=\{j:(j, i) \in E\}
$$

## Computational Graphs (continued)

- A variable $u^{i} \in \mathbb{R}^{d_{i}}$ is associated with each vertex in the graph. Here $d_{i}$ for $i=1 \ldots n$ specifies the dimensionality of $u^{i}$. We assume $d_{n}=1$, hence the output variable is a scalar.
- A function $f^{i}$ is associated with each non-leaf vertex in the graph $(i \in\{(l+1) \ldots n\})$. The function maps a vector $A^{i}$ defined as

$$
A^{i}=\left\langle u^{j} \mid j \in \pi(i)\right\rangle
$$

to a vector $f^{i}\left(A^{i}\right) \in \mathbb{R}^{d_{i}}$

## An Example

- Define $n=4, l=2$
- Define $d_{i}=1$ for all $i$ (all variables are scalars)
- Define $E=\{(1,3),(2,3),(2,4),(3,4)\}$
- Define

$$
\begin{aligned}
& f^{3}\left(u^{1}, u^{2}\right)=u^{1}+u^{2} \\
& f^{4}\left(u^{2}, u^{3}\right)=u^{2} \times u^{3}
\end{aligned}
$$

## Two Questions

- Note that the computational graph defines a function, which we call $\bar{f}^{n}$, from the values of the leaf variables to the output variable:

$$
u^{n}=\bar{f}^{n}\left(u^{1} \ldots u^{l}\right)
$$

- Given a computational graph, and values for the leaf variables $u^{1} \ldots u^{l}$ :

1. How do we compute the output $u^{n}$ ?
2. How do we compute the partial derivatives

$$
\left.\frac{\partial u^{n}}{\partial u^{i}}\right|^{\bar{f}^{n}}
$$

$$
\text { for all } i \in\{1 \ldots l\} ?
$$

## Forward Computation

Input: Values for leaf variables $u^{1} \ldots u^{l}$
Algorithm:

- For $i=(l+1) \ldots n$

$$
u^{i}=f^{i}\left(A^{i}\right)
$$

where

$$
A^{i}=\left\langle u^{j} \mid j \in \pi(i)\right\rangle
$$

## An Example

- Define $n=4, l=2$
- Define $d_{i}=1$ for all $i$ (all variables are scalars)
- Define $E=\{(1,3),(2,3),(2,4),(3,4)\}$
- Define

$$
\begin{aligned}
& f^{3}\left(u^{1}, u^{2}\right)=u^{1}+u^{2} \\
& f^{4}\left(u^{2}, u^{3}\right)=u^{2} \times u^{3}
\end{aligned}
$$

## Defining and Calculating Derivatives

- For any $k \in\{(l+1) \ldots n\}$, there is a function $\bar{f}^{k}$ such that

$$
u^{k}=\bar{f}^{k}\left(u^{1}, u^{2}, \ldots u^{l}\right)
$$

- We want to calculate

$$
\left.\frac{\partial u^{n}}{\partial u^{j}}\right|_{u^{1} \ldots u^{l}} ^{\bar{f}^{n}}
$$

for $j=1 \ldots l$

## Computational Graphs (continued)

- A function $J^{j \rightarrow i}$ is associated with each edge $(j, i) \in E$. The function maps a vector $A^{i}$ defined as

$$
A^{i}=\left\langle u^{j} \mid j \in \pi(i)\right\rangle
$$

to a matrix $J^{j \rightarrow i}\left(A^{i}\right) \in \mathbb{R}^{d_{i} \times d_{j}}$.

$$
J^{j \rightarrow i}\left(A^{i}\right)=\frac{\partial f^{i}\left(A^{i}\right)}{\partial u^{j}}=\left.\frac{\partial u^{i}}{\partial u^{j}}\right|_{A^{i}} ^{f^{i}}
$$

## Forward Pass

Input: Values for leaf variables $u^{1} \ldots u^{l}$ Algorithm:

- For $i=(l+1) \ldots n$

$$
\begin{gathered}
A^{i}=\left\langle u^{j} \mid j \in \pi(i)\right\rangle \\
u^{i}=f^{i}\left(A^{i}\right)
\end{gathered}
$$

## Backward Pass

- $p^{n}=1$
- For $j=(n-1) \ldots 1$ :

$$
p^{j}=\sum_{i:(j, i) \in E} p^{i} J^{j \rightarrow i}\left(A^{i}\right)
$$

- Output: $p^{i}$ for $i=1 \ldots l$ satisfying

$$
p^{i}=\left.\frac{\partial o}{\partial u^{i}}\right|_{u^{1} \ldots u^{l}} ^{\bar{f}^{n}}
$$

## An Example

$$
\begin{aligned}
& p^{n}=1 \\
& \text { For } j=(n-1) \ldots 1 \text { : }
\end{aligned}
$$

$$
p^{j}=\sum_{i:(j, i) \in E} p^{i} J^{j \rightarrow i}\left(A^{i}\right)
$$

## Overview

- Introduction
- The chain rule
- Derivatives in a single-layer neural network
- Computational graphs
- Backpropagation in computational graphs
- Justification for backpropagation


## Products of Jacobians over Paths in the Graph

- A directed path between vertices $j$ and $k$ is a sequence of edges $\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots\left(i_{n-1}, i_{n}\right)$ with $n \geq 2$ such that each edge is in $E$, and $i_{1}=j$, and $i_{n}=k$.
- For any $j, k$, we write $\mathcal{P}(j, k)$ to denote the set of all directed paths between $j$ and $k$
- For convenience we define $D^{a \rightarrow b}=J^{a \rightarrow b}\left(A^{b}\right)$ for all edges $(a, b)$.
- Theorem: for any $j \in\{1 \ldots l\}, k \in\{(l+1) \ldots n\}$,

$$
\left.\frac{\partial u^{k}}{\partial u^{j}}\right|^{f^{f}}=\sum_{p \in \mathcal{P}(j, k)} \prod_{(a, b) \in p} D^{a \rightarrow b}
$$

## An Example

$$
\left.\frac{\partial u^{k}}{\partial u^{j}}\right|^{\bar{f}^{k}}=\sum_{p \in \mathcal{P}(j, k)} \prod_{(a, b) \in p} D^{a \rightarrow b}
$$

## Proof Sketch

- For any $j, j^{\prime}, k$, we write $\mathcal{P}\left(j, j^{\prime}, k\right)$ to denote the set of all directed paths between $j$ and $k$ such that the last edge in the sequence is $\left(j^{\prime}, k\right)$.
- Proof sketch: By induction over the graph. By the chain rule we have

$$
\begin{aligned}
\left.\frac{\partial u^{k}}{\partial u^{j}}\right|^{\bar{f}^{k}} & =\sum_{j^{\prime}:\left(j^{\prime}, k\right) \in E} D^{j^{\prime} \rightarrow k} \times\left.\frac{\partial u^{j^{\prime}}}{\partial u^{j}}\right|^{\bar{f}^{j^{\prime}}} \\
& =\sum_{j^{\prime}:\left(j^{\prime}, k\right) \in E} D^{j^{\prime} \rightarrow k} \times \sum_{p \in \mathcal{P}\left(j, j^{\prime}\right)} \prod_{(a, b) \in p} D^{a \rightarrow b} \\
& =\sum_{j^{\prime}:\left(j^{\prime}, k\right) \in E} \sum_{p \in \mathcal{P}\left(j, j^{\prime}, k\right)} \prod_{(a, b) \in p} D^{a \rightarrow b} \\
& =\sum_{p \in \mathcal{P}(j, k)} \prod_{(a, b) \in p} D^{a \rightarrow b}
\end{aligned}
$$

## Backward Pass

- $p^{n}=1$
- For $j=(n-1) \ldots 1$ :

$$
p^{j}=\sum_{i:(j, i) \in E} p^{i} D^{j \rightarrow i}
$$

- Output: $p^{i}$ for $i=1 \ldots l$ satisfying

$$
p^{i}=\left.\frac{\partial o}{\partial u^{i}}\right|_{u^{1}, u^{2}, \ldots u^{l}} ^{\bar{f}^{o}}
$$

## Correctness of the Backward Pass

- Theorem: For all $p^{i}$ we have

$$
p^{i}=\sum_{p \in \mathcal{P}(i, n)} \prod_{(a, b) \in p} D^{a \rightarrow b}
$$

It follows that for any $i \in\{1 \ldots l\}$,

$$
p^{i}=\left.\frac{\partial u^{n}}{\partial u^{i}}\right|^{f^{n}}
$$

## Proof

- Theorem: For all $p^{i}$ we have

$$
p^{i}=\sum_{p \in \mathcal{P}(i, n)} \prod_{(a, b) \in p} D^{a \rightarrow b}
$$

- Proof sketch: by induction on $i=n, i=(n-1), i=(n-2), \ldots i=1$. For $i=n$ we have $p^{n}=1$ so the proposition is true. For $j=(n-1) \ldots 1$ we have

$$
\begin{aligned}
p^{j} & =\sum_{i:(j, i) \in E} p^{i} D^{j \rightarrow i} \\
& =\sum_{i:(j, i) \in E}\left(\sum_{p \in \mathcal{P}(i, n)} \prod_{(a, b) \in p} D^{a \rightarrow b}\right) D^{j \rightarrow i}=\sum_{p \in \mathcal{P}(j, n)} \prod_{(a, b) \in p} D^{a \rightarrow b}
\end{aligned}
$$

