Question 1

The only tag sequence $y_{1} \ldots y_{n+1}$ for which $p\left(y_{1} \ldots y_{n+1}\right)>0$ is D N V STOP. Thus the only sequences that satisfy the conditions are
the dog dog, D N V STOP
the barks dog, D N V STOP
the dog barks, D N V STOP
the barks barks, D N V STOP

Question 2a

Input: a sentence $x_{1} \ldots x_{n}$, parameters $q(s \mid u, v, w)$ and $e(x \mid s)$.
Definitions: Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-2}=\mathcal{K}_{-1}=\mathcal{K}_{0}=\{*\}$, and $\mathcal{K}_{k}=\mathcal{K}$ for $k=1 \ldots n$.
Initialization: Set $\pi\left(0,{ }^{*},{ }^{*},{ }^{*}\right)=1$.
Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{K}_{k-2}, v \in \mathcal{K}_{k-1}, w \in \mathcal{K}_{k}$,

$$
\begin{aligned}
& \pi(k, u, v, w)= \\
& \max _{s \in \mathcal{K}_{k-3}}\left(\pi(k-1, s, u, v) \times q(w \mid s, u, v) \times e\left(x_{k} \mid w\right)\right)
\end{aligned}
$$

- Return

$$
\max _{u \in \mathcal{K}_{n-2}, v \in \mathcal{K}_{n-1}, w \in \mathcal{K}_{n}}(\pi(n, u, v, w) \times q(\mathrm{STOP} \mid u, v, w))
$$

Question 2b

Input: Parameters $q(s \mid u, v)$ and $e(x \mid s)$.
Definitions: Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-1}=\mathcal{K}_{0}=\{*\}$, and $\mathcal{K}_{k}=\mathcal{K}$ for $k=1 \ldots n$. Define \mathcal{V} to be the set of possible words.
Initialization: Set $\pi\left(0,{ }^{*},{ }^{*}\right)=1$.
Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{K}_{k-1}, v \in \mathcal{K}_{k}$,

$$
\begin{aligned}
& \pi(k, u, v)= \\
& \max _{s \in \mathcal{K}_{k-2}, x \in \mathcal{V}}(\pi(k-1, s, u) \times q(v \mid s, u) \times e(x \mid v))
\end{aligned}
$$

- Return $\max _{u \in \mathcal{K}_{n-1}, v \in \mathcal{K}_{n}}(\pi(n, u, v) \times q(\mathrm{STOP} \mid u, v))$

Question 3

Input: Parameters $q(s \mid u)$ and $e(x \mid s)$.
Definitions: Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-1}=\mathcal{K}_{0}=\{*\}$, and $\mathcal{K}_{k}=\mathcal{K}$ for $k=1 \ldots n$.
Initialization: Set $\pi\left(0,{ }^{*},{ }^{*}\right)=1$.
Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{K}_{k-1}, v \in \mathcal{K}_{k}$,

$$
\begin{aligned}
& \pi(k, u, v)= \\
& \max _{s \in \mathcal{K}_{k-2}}(\pi(k-1, s, u) \times q(v \mid s) \times e(x \mid v))
\end{aligned}
$$

- Return $\max _{u \in \mathcal{K}_{n-1}, v \in \mathcal{K}_{n}}(\pi(n, u, v) \times q(\mathrm{STOP} \mid u))$

Question 4

The only word which is seen with more than one tag is can: hence can is the only word such that $e($ word $\mid y)$ is greater than 0 for more than one tag y.
Now if we consider the two incorrect taggings, the/DT can/VB is/VB in/IN the/DT shed/NN the/DT dog/NN can/NN see/VB the/DT cat/NN we can see that both have probability 0 under the maximum likelihood model. The first sentence has the tag bigram $D T$ $V B$ that is never seen in the training corpus, and hence has an associated parameter $q(\mathrm{VB} \mid \mathrm{DT})=0$, resulting in the entire tagged sentence having probability zero. The second sentence has a tag bigram NN NN that is also never seen, and hence has probability 0 . It is easy to verify that the two correct tag sequences both have probability greater than 0 .

Question 5

Consider a training set consisting of the single tagged sentence the/DT the/NN the/DT the/DT the/DT the/DT

In this case we have maximum likelihood estimates

$$
e(\text { the } \mid \mathrm{DT})=e(\text { the } \mid \mathrm{NN})=1
$$

$$
q(\mathrm{NN} \mid \mathrm{DT})=1 / 5 \quad q(\mathrm{DT} \mid \mathrm{DT})=3 / 5 \quad q(\mathrm{STOP} \mid \mathrm{DT})=1 / 5
$$

It can then be verified that the most likely tag sequence for the the the the the the is DT DT DT DT DT DT STOP.

