Questions for Flipped Classroom Session of COMS 4705

Week 3, Fall 2014. (Michael Collins)

Question 1 Consider a trigram HMM tagger with:

e The set K of possible tags equal to {D, N, V}
e The set V of possible words equal to {the, dog, barks}

o The following parameters:

g(D[*, ") = 1
g(N[*,D) = 1
g(VD,N) = 1
g(STOPN,V) = 1
e(the D) = 1
e(dog|N) = 0.4
e(barksN) = 0.6
e(dog|V) = 0.1
e(barks|V) = 0.9

with all other parameter values equal to 0.

Question: Write down the set of all pairs of sequences x1 ... 2p, Y7 ..

that the following properties hold:

® p(x1...Tn, Y1 Yny1) >0
e ;e Vforalliel...n

o y;, € Lforalli € 1...n,and y,4+1 = STOP

. Yn+1 such



Input: a sentence x; . .. x,, parameters ¢(s|u,v) and e(x|s).

Definitions: Define K to be the set of possible tags. Define X_; = Ky = {*}, and
Krp=Kfork=1...n.

Initialization: Set 7(0, *, *) = 1.

Algorithm:

e Fork=1...n,
— Foru € Ky_1,v € Ky,

m(k,u,v) = max (m(k—1,w,u) x q(v|jw,u) x e(zx|v))
WEK K _o

e Return max,ci, ,vek, (7(n,u,v) x ¢(STOP|u,v))

Figure 1: The basic Viterbi Algorithm.

Question 2 Consider a trigram HMM, as introduced in class. We saw that the
Viterbi algorithm could be used to find

max p(Ti...Tn, Y1 Yntl)
Y1---Yn+1

where the max is taken over all sequences ¥ . .. yn+1 such that y; € K for i =
1...n,and yn4+1 = STOP. (Recall that K is the set of possible tags in the HMM.)
In a trigram tagger we assume that p takes the form

n+1 n

p(@1 @, yr Y1) = [ a@ilyio, i) [T el vi) e
=1 =1

Recall that we have assumed in this definition that yg = y_1 = *, and yp4+1 =
STOP. The Viterbi algorithm is shown in figure 1.

Now consider a four-gram tagger, where p takes the form

n+1 n
Pt Ty 1 Yngr) = | aWilvizs, yiez. vie1) [ ] e@ilys) 2)
i1 =1

We have assumed in this definition that yg = y_1 = y_2 = *, and y,,+1 = STOP.



Question: In the box below, give a version of the Viterbi algorithm that takes as
input a sentence 1 . . . T, and finds

max p(r1...TpyY1---Yntl)
Y1---Yn+1

for a four-gram tagger, as defined in Eq. 4.

Input: a sentence x; . .., parameters ¢(w|t, u,v) and e(z|s).

Definitions: Define K to be the set of possible tags. Define K_o = K_1 = Ky =
{*},and Cy =K fork=1...n.

Initialization:

Algorithm:

Return:




Question: In the box below, give a version of the Viterbi algorithm that takes as
input an integer n, and finds

R P(T1. . Ty Y1 - Ynt1)
for a trigram tagger, as defined in Eq. 3. Hence the input to the algorithm is
an integer n, and the output from the algorithm is the highest scoring pair of
sequences I ... Tn, Y1 - - - Yn+1 Under the model.

Input: an integer n, parameters ¢(w|u, v) and e(x|s).

Definitions: Define K to be the set of possible tags. Define X_; = Ky = {*}, and
Ky =K fork =1...n. Define V to be the set of possible words.

Initialization:

Algorithm:

Return:




Question 3 Consider a trigram HMM, as introduced in class. We saw that the
Viterbi algorithm could be used to find

max p(r1...TpyY1---Yntl)
Y1---Yn+1

where the max is taken over all sequences ¥ ... y,+1 such that y; € K for ¢ =
1...n,and y,4+1 = STOP. (Recall that C is the set of possible tags in the HMM.)
In a trigram tagger we assume that p takes the form

n+1 n
@1y yng1) = [ aWilvio, vio1) T el vi) 3)
=1 i=1

Recall that we have assumed in this definition that yo = y_1 = *, and yp+1 =
STOP. The Viterbi algorithm is shown in figure 1.

Now consider a “skip” tagger, where p takes the form

n+1 n

P wn, 1Y) = [ a(wilvi2) [] e(@ilwi) “4)
i=1 i=1
We have assumed in this definition that yo = y_1 = *, and y,+1 = STOP. Note
that a “skip” tagger replaces the term ¢(y;|y;—2,y;—1) in a regular trigram tagger
with
a(yilyi—2)

We call it a skip tagger because y;_1 is now omitted from the conditioning infor-
mation.



Question: In the box below, give a version of the Viterbi algorithm that takes as
input a sentence 1 . . . T, and finds

max p(T1...Tn, Y1 Yntl)
Y1---Yn+1

for a skip tagger, as defined in Eq. 4. (Note: it is fine if the runtime of your
algorithm is O(n|K|?).)

Input: a sentence z7 . . . z,, parameters ¢(w|v) and e(x|s).

Definitions: Define K to be the set of possible tags. Define K_; = Ky = {*}, and
Kr=Kfork=1...n.

Initialization:

Algorithm:

Return:




Question 4 Say we have a training set consisting of two tagged sentences:
the/DT can/NN is/VB in/IN the/DT shed/NN
the/DT dog/NN can/VB see/VB the/DT cat/NN

We train a bigram tagger of the form

n+1 n
@1 Ty Yng1) = [ a@ilyizr) [T e(wilyi)
i=1 i=1
using simple maximum-likelihood estimates for the ¢ and e parameters.

If we then use the Viterbi algorithm to find the maximum probability tag sequence
for each of the training sentences, show that the tagger tags both sentences cor-
rectly.

Question 5 Now come up with a training set such that when we train a bigram
tagger using maximum likelihood estimates, the resulting model makes at least one
mistake on the training set.



