Flipped Classroom Questions on Computational Graphs, and Backpropagation
Michael Collins

Question 1: Consider the following system of equations, which define a neural network with two hidden layers:

Definitions: The set of possible labels is \mathcal{Y}. We define $K=|\mathcal{Y}| \cdot g^{1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $g^{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ are transfer functions. We define $\mathrm{LS}=$ LOG-SOFTMAX.
Inputs: $x^{i} \in \mathbb{R}^{d}, y^{i} \in \mathcal{Y}, W^{1} \in \mathbb{R}^{m \times d}, b^{1} \in \mathbb{R}^{m}, W^{2} \in \mathbb{R}^{m \times m}, b^{2} \in \mathbb{R}^{m}$, $V \in \mathbb{R}^{K \times m}, \gamma \in \mathbb{R}^{K}$.
Equations:

$$
\begin{aligned}
z^{1} \in \mathbb{R}^{m} & =W^{1} x^{i}+b^{1} \\
h^{1} \in \mathbb{R}^{m} & =g^{1}\left(z^{1}\right) \\
z^{2} \in \mathbb{R}^{m} & =W^{2} h^{1}+b^{2} \\
h^{2} \in \mathbb{R}^{m} & =g^{2}\left(z^{2}\right) \\
l \in \mathbb{R}^{K} & =V h^{2}+\gamma \\
q \in \mathbb{R}^{K} & =\mathrm{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

Question 1a: Draw the computational graph for this system of equations. Which variables are at the leaves?

Question 1b: Write down expressions (using products of Jacobians) for the following quantities:

$$
\begin{gathered}
\left.\frac{\partial o}{\partial V}\right|^{\bar{f}^{o}} \\
\left.\frac{\partial o}{\partial W^{1}}\right|^{\bar{f}^{o}} \\
\left.\frac{\partial o}{\partial W^{2}}\right|^{\bar{f}^{o}}
\end{gathered}
$$

Question 2: Consider a computational graph with the following definitions:

- Number of leaves $l=2$, number of nodes $n=5$
- A variable $u^{i} \in \mathbb{R}$ for $i=1 \ldots n$. Hence each variable in the graph has dimension $d_{i}=1$
- Set of edges $E=\{(1,3),(2,3),(1,4),(2,4),(3,5),(4,5)\}$
- Local functions:

$$
\begin{gathered}
u^{3}=f^{3}\left(u^{1}, u^{2}\right)=u^{1} \times u^{2} \\
u^{4}=f^{4}\left(u^{1}, u^{2}\right)=u^{1}+u^{2} \\
u^{5}=f^{5}\left(u^{3}, u^{4}\right)=2 \times u^{3} \times u^{4}
\end{gathered}
$$

Question 2a: Draw the computational graph for this example. Assume that the inputs are

$$
u^{1}=3, \quad u^{2}=4
$$

Show how values are computed in the forward pass of the algorithm, giving an output value for u^{5}
Question 2b: The output value u^{n} is a function \bar{f}^{n} of the values for the leaf variables u^{1} and u^{2}.

$$
u^{n}=\bar{f}^{n}\left(u^{1}, u^{2}\right)
$$

Write down the expressin for \bar{f}^{n}
Question 2b: Recall that for each edge (j, i) we define the Jacobian

$$
J^{j \rightarrow i}\left(A^{i}\right)=\left.\frac{\partial u^{i}}{\partial u^{j}}\right|^{f^{i}}
$$

where $A^{i}=\left\langle u^{j}:(j, i) \in E\right\rangle$. For example we have

$$
J^{1 \rightarrow 3}\left(A^{3}\right)=\frac{\partial}{\partial u^{1}}\left(u^{1} \times u^{2}\right)=u^{2}
$$

Write down expressions for Jacobians associated with the other edges in graph. Calculate the values for these Jacobians under inputs $u^{1}=3$ and $u^{2}=4$

Question 2c: Recall that the general form for the backward pass is:

- $p^{n}=1$
- For $j=(n-1) \ldots 1$:

$$
p^{j}=\sum_{i:(j, i) \in E} p^{i} J^{j \rightarrow i}\left(A^{i}\right)
$$

Given that the inputs are $u^{1}=3$ and $u^{2}=4$, calculate the values $p^{5}, p^{4}, \ldots p^{1}$ calculated in the backward pass.

Question 3: Consider the following system of equations, which define a neural network with a single hidden layer:
Definitions: The set of possible labels is \mathcal{Y}. We define $K=|\mathcal{Y}| . g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is a transfer function. We define $\mathrm{LS}=$ LOG-SOFTMAX.
Inputs: $x^{i} \in \mathbb{R}^{d}, y^{i} \in \mathcal{Y}, W \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}, V \in \mathbb{R}^{K \times m}, \gamma \in \mathbb{R}^{K}$.
Equations:

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\operatorname{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

Question 3a: Now say we have a pair of training examples $\left(x^{i, 1}, y^{i, 1}\right)$ and $\left(x^{i, 2}, y^{i, 2}\right)$, and we would like to take gradients with respect to the loss function

$$
L(\theta, v)=-\log p\left(y^{i, 1} \mid x^{i, 1} ; \theta, v\right)-\log p\left(y^{i, 2} \mid x^{i, 2} ; \theta, v\right)
$$

Write down a system of equations for this loss function. Show the computational graph. Your graph should have intermediate variables $z^{1}, z^{2}, h^{1}, h^{2}, l^{1}, l^{2}, q^{1}, q^{2}$, and an output variable o.
Question 3b: If o is the output variable for your answer to Question 3a, write down an expression for

$$
\left.\frac{\partial o}{\partial V}\right|^{\overline{f^{o}}}
$$

Hint: recall that to calculate a partial derivative of the output with respect to a leaf, you can sum over directed paths from the leaf to the output, and take the product of Jacobians along each path.

Question 3c: Again assume that we have inputs $\left(x^{i, 1}, y^{i, 1}\right)$ and $\left(x^{i, 2}, y^{i, 2}\right)$ and we would like the loss function to be

$$
L(\theta, v)=-\log p\left(y^{i, 1} \mid x^{i, 1} ; \theta, v\right)-\log p\left(y^{i, 2} \mid x^{i, 2} ; \theta, v\right)
$$

Assume that we would like to implement this loss through the following system of equations:

$$
\begin{aligned}
z \in \mathbb{R}^{m \times 2} & =f^{z}\left(W, x^{i, 1}, x^{i, 2}, b\right) \\
h \in \mathbb{R}^{m \times 2} & =f^{g}(z) \\
l \in \mathbb{R}^{K \times 2} & =f^{l}(V, h, \gamma) \\
q \in \mathbb{R}^{K \times 2} & =f^{q}(l) \\
o \in \mathbb{R} & =f^{o}\left(q, y^{i, 1}, y^{i, 2}\right)
\end{aligned}
$$

How would you define the functions $f^{z}, f^{g}, f^{l}, f^{q}$, and f^{o} to implement the loss function?

You may find the following notation useful. Given matrices $A \in \mathbb{R}^{m \times d_{1}}$ and $B \in \mathbb{R}^{m \times d_{2}}$, we write $[A ; B]$ to refer to the matrix of dimension $m \times\left(d_{1}+d_{2}\right)$ formed by concatenating the columns of B to the columns of A.

