
Word Embeddings in Feedforward Networks;

Tagging and Dependency Parsing using

Feedforward Networks

Michael Collins, Columbia University

Overview

I Introduction

I Multi-layer feedforward networks

I Representing words as vectors (“word embeddings”)

I The dependency parsing problem

I Dependency parsing using a shift-reduce neural-network
model

Multi-Layer Feedforward Networks
I An integer d specifying the input dimension. A set Y of

output labels with |Y| = K.

I An integer J specifying the number of hidden layers in the
network.

I An integer mj for j ∈ {1 . . . J} specifying the number of
hidden units in the j’th layer.

I A matrix W 1 ∈ Rm1×d and a vector b1 ∈ Rm1 associated with
the first layer.

I For each j ∈ {2 . . . J}, a matrix W j ∈ Rmj×mj−1 and a
vector bj ∈ Rmj associated with the j’th layer.

I For each j ∈ {1 . . . J}, a transfer function gj : Rmj → Rmj

associated with the j’th layer.

I A matrix V ∈ RK×mJ and a vector γ ∈ RK specifying the
parameters in the output layer.

Multi-Layer Feedforward Networks (continued)
I Calculate output of first layer:

z1 ∈ Rm1 = W 1xi + b1

h1 ∈ Rm1 = g1(z1)

I Calculate outputs of layers 2 . . . J :
For j = 2 . . . J :

zj ∈ Rmj = W jhj−1 + bj

hj ∈ Rmj = gj(zj)

I Calculate output value:

l ∈ RK = V hJ + bJ

q ∈ RK = LS(l)

o ∈ R = − log qyi

Overview

I Introduction

I Multi-layer feedforward networks

I Representing words as vectors (“word embeddings”)

I The dependency parsing problem

I Dependency parsing using a shift-reduce neural-network
model

An Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

• There are many possible tags in the position ??
{NN, NNS, Vt, Vi, IN, DT, . . . }

• The task: model the distribution p(tj|t1, . . . , tj−1, w1 . . . wn)
where tj is the j’th tag in the sequence, wj is the j’th word

• The input to the neural network will be 〈t1 . . . tj−1, w1 . . . wn, j〉

One-Hot Encodings of Words, Tags etc.
I A dictionary D with size s(D) maps each word w in the

vocabulary to an integer Index(w,D) in the range 1 . . . s(D).

Index(the, D) = 1

Index(dog, D) = 2

Index(cat, D) = 3

Index(saw, D) = 4

. . .

I For any word w, dictionary D, Onehot(w,D) maps a word w
to a “one-hot vector” u = Onehot(w,D) ∈ Rs(D). We have

uj = 1 for j = Index(w,D)

uj = 0 otherwise

One-Hot Encodings of Words, Tags etc. (continued)
I A dictionary D with size s(D) maps each word w in the

vocabulary to an integer in the range 1 . . . s(D).

Index(the, D) = 1

Index(dog, D) = 2

Index(cat, D) = 3

. . .

Onehot(the, D) = [1, 0, 0, . . .]

Onehot(dog, D) = [0, 1, 0, . . .]

Onehot(cat, D) = [0, 0, 1, . . .]

. . .

The Concatenation Operation

I Given column vectors vi ∈ Rdi for i = 1 . . . n,

z ∈ Rd = Concat(v1, v2, . . . vn)

where d =
∑n

i=1 di
I z is a vector formed by concatenating the vectors v1 . . . vn

I z is a column vector of dimension
∑

i di

The Concatenation Operation (continued)
I Given vectors vi ∈ Rdi for i = 1 . . . n,

z ∈ Rd = Concat(v1, v2, . . . vn)

where d =
∑n

i=1 di
I The Jacobians:

∂z

∂vi
∈ Rd×di

have entries [
∂z

∂vi

]
j,k

= 1

if j = k +
∑

i′<i di′ , [
∂z

∂vi

]
j,k

= 0

otherwise

A Single-Layer Computational Network for Tagging
Inputs: A training example xi = 〈t1 . . . tj−1, w1 . . . wn, j〉, yi ∈ Y. A
word dictionary D with size s(D), a tag dictionary T with size s(T).
Parameters of a single-layer feedforward network.
Computational Graph:

t′−2 ∈ Rs(T) = Onehot(tj−2, T)

t′−1 ∈ Rs(T) = Onehot(tj−1, T)

w′−1 ∈ Rs(D) = Onehot(wj−1, D)

w′0 ∈ Rs(D) = Onehot(wj , D)

w′+1 ∈ Rs(D) = Onehot(wj+1, D)

u ∈ R2s(T)+3s(D) = Concat(t′−2, t
′
−1, w

′
−1, w

′
0, w

′
+1)

z = Wu+ b, h = g(z), l = V h+ γ, q = LS(l)

o = qyi

The Number of Parameters

t′−2 ∈ Rs(T) = Onehot(tj−2, T)

. . .

w′+1 ∈ Rs(D) = Onehot(wj+1, D)

u = Concat(t′−2, t
′
−1, w

′
−1, w

′
0, w

′
+1)

z ∈ Rm = Wu+ b

. . .

I An example: s(T) = 50 (50 tags), s(D) = 10, 000 (10,000
words), m = 1000 (1000 neurons in the single layer)

I Then
W ∈ Rm×(2s(T)+3s(D))

and m = 1000, 2s(T) + 3s(D) = 30, 100, so there are
m× (2s(T) + 3s(D)) = 30, 100, 000 parameters in the matrix W

An Example

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

t
′
−2 ∈Rs(T)

= Onehot(tj−2, T)

t
′
−1 ∈Rs(T)

= Onehot(tj−1, T)

w
′
−1 ∈Rs(D)

= Onehot(wj−1, D)

w
′
0 ∈Rs(D)

= Onehot(wj , D)

w
′
+1 ∈Rs(D)

= Onehot(wj+1, D)

u = Concat(t′−2, t
′
−1, w

′
−1, w

′
0, w
′
+1)

. . .

Embedding Matrices
I Given a word w, a word dictionary D we can map w to a

one-hot representation

w′ ∈ Rs(D)×1 = Onehot(w,D)

I Now assume we have an embedding dictionary E ∈ Re×s(D)

where e is some integer. Typical values of e are e = 100 or
e = 200

I We can now map the one-hot representation w′ to

w′′︸︷︷︸
e×1

= E︸︷︷︸
e×s(D)

w′︸︷︷︸
s(D)×1

= E × Onehot(w,D)

I Equivalently, a word w is mapped to a vector E(: j) ∈ Re

where j = Index(w,D) is the integer that word w is mapped
to, and E(: j) is the j’th column in the matrix.

Embedding Matrices vs. One-hot Vectors
I One-hot representation:

w′ ∈ Rs(D)×1 = Onehot(w,D)

This representation is high-dimensional, sparse
I Embedding representation:

w′′︸︷︷︸
e×1

= E︸︷︷︸
e×s(D)

w′︸︷︷︸
s(D)×1

= E × Onehot(w,D)

This representation is low-dimensional, dense
I The embedding matrices can be learned using stochastic

gradient descent and backpropagation (each entry of E is a
new parameter in the model)

I Critically, embeddings allow shared information between
words: e.g., words with similar meaning or syntax get
mapped to “similar” embeddings

A Single-Layer Computational Network for Tagging
Inputs: A training example xi = 〈t1 . . . tj−1, w1 . . . wn, j〉, yi ∈ Y. A
word dictionary D with size s(D), a tag dictionary T with size s(T). A
word embedding matrix E ∈ Re×s(D). A tag embedding matrix
A ∈ Ra×s(D). Parameters of a single-layer feedforward network.
Computational Graph:

t′−2 ∈ Ra = A× Onehot(tj−2, T)

t′−1 ∈ Ra = A× Onehot(tj−1, T)

w′−1 ∈ Re = E × Onehot(wj−1, D)

w′0 ∈ Re = E × Onehot(wj , D)

w′+1 ∈ Re = E × Onehot(wj+1, D)

u ∈ R2a+3e = Concat(t′−2, t
′
−1, w

′
−1, w

′
0, w

′
+1)

z = Wu+ b, h = g(z), l = V h+ γ, q = LS(l)

o = qyi

An Example

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

t
′
−2 ∈Ra

= A× Onehot(tj−2, T)

t
′
−1 ∈Ra

= A× Onehot(tj−1, T)

w
′
−1 ∈Re

= E × Onehot(wj−1, D)

w
′
0 ∈Re

= E × Onehot(wj , D)

w
′
+1 ∈Re

= E × Onehot(wj+1, D)

u ∈R2a+3e
= Concat(t′−2, t

′
−1, w

′
−1, w

′
0, w
′
+1)

Calculating Jacobians

w′0 ∈ Re = E × Onehot(w,D)

Equivalently:

(w′0)j =
∑
k

Ej,k × Onehotk(w,D)

I Need to calculate the Jacobian

∂w′0
E

This has entries[
∂w′0
E

]
j,(j′,k)

= 1 if j = j′ and Onehotk(w,E) = 1, 0 otherwise

An Additional Perspective

t′−2 ∈ Ra = Onehot(tj−2, T)

. . .

w′+1 ∈ Re = Onehot(wj+1, D)

u = Concat(t′−2 . . . w
′
+1)

z ∈ Rm = Wu+ b

t′−2 ∈ Ra = A× Onehot(tj−2, T)

. . .

w′+1 ∈ Re = E × Onehot(wj+1, D)

ū = Concat(t′−2 . . . w
′
+1)

z̄ ∈ Rm = W̄ ū+ b

I If we set

W︸︷︷︸
m×(2s(T)+3s(E))

= W̄︸︷︷︸
m×(2a+3e)

×Diag(A,A,E,E,E)︸ ︷︷ ︸
(2a+3e)×(2s(T)+3s(D))

then Wu+ b = W̄ ū+ b hence z = z̄

An Additional Perspective (continued)

I If we set

W︸︷︷︸
m×(2s(T)+3s(E))

= W̄︸︷︷︸
m×(2a+3e)

×Diag(A,A,E,E,E)︸ ︷︷ ︸
(2a+3e)×(2s(T)+3s(D))

then Wu+ b = W̄ ū+ b hence z = z̄

I An example: s(T) = 50 (50 tags), s(D) = 10, 000 (10,000
words), a = e = 100 (recall a, e are size of embeddings for
tags and words respectively), m = 1000 (1000 neurons)

I Then we have parameters

W︸︷︷︸
1000×30,100

vs. W̄︸︷︷︸
1000×500

A︸︷︷︸
100×50

E︸︷︷︸
100×10,000

Overview

I Introduction

I Multi-layer feedforward networks

I Representing words as vectors (“word embeddings”)

I The dependency parsing problem

I Dependency parsing using a shift-reduce neural-network
model

Unlabeled Dependency Parses

root John saw a movie

I root is a special root symbol

I Each dependency is a pair (h,m) where h is the index of a head
word, m is the index of a modifier word. In the figures, we
represent a dependency (h,m) by a directed edge from h to m.

I Dependencies in the above example are (0, 2), (2, 1), (2, 4), and
(4, 3). (We take 0 to be the root symbol.)

The (Unlabeled) Dependency Parsing Problem

John saw a movie

⇓

root John saw a movie

Conditions on Dependency Structures

saw a movieJohnroot he liked todaythat

I The dependency arcs form a directed tree, with the root

symbol at the root of the tree.
(Definition: A directed tree rooted at root is a tree, where for
every word w other than the root, there is a directed path
from root to w.)

I There are no “crossing dependencies”.
Dependency structures with no crossing dependencies are
sometimes referred to as projective structures.

All Dependency Parses for John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

The Labeled Dependency Parsing Problem

I live in New York city .

⇓

Overview

I Introduction

I Multi-layer feedforward networks

I Representing words as vectors (“word embeddings”)

I The dependency parsing problem

I Dependency parsing using a shift-reduce neural-network
model

Shift-Reduce Dependency Parsing: Configurations

I A configuration consists of:

1. A stack σ consisting of a sequence of words, e.g.,

σ = [root0, I1, live2]

2. A buffer β consisting of a sequence of words, e.g.,

β = [in3,New4,York5, city6, .7]

3. A set α of labeled dependencies, e.g.,

α = {{1→nsubj 2}, {6→nn 5}

The Initial Configuration

σ = [root0], β = [I1, live2, in3,New4,York5, city6, .7], α = {}

Shift-Reduce Actions: The Shift Action

The shift action takes the first word in the buffer, and adds it to
the end of the stack.

σ = [root0], β = [I1, live2, in3,New4,York5, city6, .7], α = {}

SHIFT

⇓

σ = [root0, I1], β = [live2, in3,New4,York5, city6, .7], α = {}

Shift-Reduce Actions: The Shift Action

The shift action takes the first word in the buffer, and adds it to
the end of the stack.

σ = [root0, I1], β = [live2, in3,New4,York5, city6, .7], α = {}

SHIFT

⇓

σ = [root0, I1, live2], β = [in3,New4,York5, city6, .7], α = {}

Shift-Reduce Actions: The Left-Arc Action
The LEFT-ARCnsubj action takes the top two words on the stack,
adds a dependency between them in the left direction with label
nsubj, and removes the modifier word from the stack. There is a
LEFT-ARCl action for each possible dependency label l.

σ = [root0, I1, live2], β = [in3,New4,York5, city6, .7], α = {}

LEFT-ARCnsubj

⇓

σ = [root0, live2], β = [in3,New4,York5, city6, .7], α = {{2→nsubj 1}}

Shift-Reduce Actions: The Right-Arc Action

The RIGHT-ARCprep action takes the top two words on the stack,
adds a dependency between them in the right direction with label
prep, and removes the modifier word from the stack. There is a
RIGHT-ARCl action for each possible dependency label l.

σ = [root0, live2, in3], β = [.7], α = {{2→nsubj 1}, }

RIGHT-ARCprep

⇓

σ = [root0, live2], β = [.7], α = {{2→nsubj 1}, {2→prep 3}}

Each Dependency Parse is Mapped to a Sequence of

Actions
Action σ β h

l−→ d

Shift [root0] [I1,live2, in3, New4, York5, city6, .7]
Shift [root0, I1] [live2, in3, New4, York5, city6, .7]

Left-Arcnsubj [root0, I1, live2] [in3, New4, York5, city6, .7] 2
nsubj−−−→ 1

Shift [root0, live2] [in3, New4, York5, city6, .7]
Shift [root0, live2, in3] [New4, York5, city6, .7]
Shift [root0, live2, in3, New4] [York5, city6, .7]
Shift [root0, live2, in3, New4, York5] [city6, .7]

Left-Arcnn [root0, live2, in3, New4, York5, city6] [.7] 6
nn−→ 5

Left-Arcnn [root0, live2, in3, New4, city6] [.7] 6
nn−→ 4

Right-Arcpobj [root0, live2, in3, city6] [.7] 3
pobj−−→ 6

Right-Arcprep [root0, live2, in3] [.7] 2
prep−−−→ 3

Shift [root0, live2] [.7]

Right-Arcpunct [root0, live2, .7] [] 2
punct−−−→ 7

Right-Arcroot [root0, live2] [] 0
root−−→ 2

Terminal [root0] []

Each Dependency Parse is Mapped to a Sequence of

Actions

I Input w1 . . . wn = I live in New York city .

I Dependency parse requires actions a1 . . . am, e.g.,

a1 . . . am = 〈Shift, Shift, LEFT-ARCnsubj, Shift, Shift, Shift, Shift,

LEFT-ARCnn, LEFT-ARCnn,RIGHT-ARCpobj,RIGHT-ARCprep,

Shift,RIGHT-ARCpunc,RIGHT-ARCroot〉

I We use a feedforward neural network to model

p(a1 . . . am|w1 . . . wn) =
m∏
i=1

p(ai|a1 . . . ai−1, w1 . . . wn)

Feature Extractors

I We use a feedforward neural network to model

p(a1 . . . am|w1 . . . wn) =
m∏
i=1

p(ai|a1 . . . ai−1, w1 . . . wn)

I Note that the action sequence a1 . . . ai−1 maps to a
configuration ci = 〈σi, βi, αi〉

I A feature extractor maps a (ci, w1 . . . wn) pair to either a
word, part-of-speech tag, or dependency label

I Weiss et al. 2015 (see also Chen and Manning 2014) have 20
word-based feature extractors, 20 tag-based feature
extractors, 12 dependency label feature extractors

I This gives 20 + 20 + 12 = 52 one-hot vectors as input to a
neural network that estimates p(a|c, w1 . . . wn)

Word-Based Feature Extractors

I A feature extractor maps a (ci, w1 . . . wn) pair to either a
word, part-of-speech tag, or dependency label

I si for i = 1 . . . 4 is the index of the i’th element on the stack.
bi for i = 1 . . . 4 is the index of the i’th element on the
buffer. lc1(si) is the first left-child of word si, lc2(si) is the
second left-child. rc1(si) and rc2(si) are the first and second
right-children of si.

I We then have features:
word(s1) word(s2) word(s3) word(s4) word(b1) word(b2) word(b3)

word(b4) word(lc1(s1)) word(lc1(s2)) word(lc2(s1)) word(lc2(s2))

word(rc1(s1)) word(rc1(s2)) word(rc2(s1)) word(rc2(s2))

word(lc1(lc1(s1)) word(lc1(lc1(s2)) word(rc1(rc1(s1)) word(rc1(rc1(s2))

Some Results
Method Unlabeled Dep. Accuracy

Global linear model1 92.9%
Neural network, greedy2 93.0%
Neural network, beam3 93.6%

Neural network, beam, global training4 94.6%

1. Hand-constructed features very similar to features in log-linear
models. Uses beam search in conjunction with a global linear model.
Transition-based Dependency Parsing with Rich Non-local Features,
Zhang and Nivre 2011.
2, 3: feedforward neural network with greedy search, or beam search.
Globally normalized transition-based neural networks. Andor et al.,
ACL 2016. See also A Fast and Accurate Dependency Parser using
Neural Network Chen and Manning, ACL 2014.

4: Neural network with global training, related to training of global

linear models (but with word embeddings, and non-linearities from a

neural network). See Andor et al. 2016.

