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A Key Problem: Calculating Derivatives

p(y|x; θ, v) =
exp (v(y) · φ(x; θ) + γy)∑

y′∈Y exp (v(y′) · φ(x; θ) + γy′)
(1)

where
φ(x; θ) = g(Wx+ b)

and

I m is an integer specifying the number of hidden units

I W ∈ Rm×d and b ∈ Rm are the parameters in θ.
g : Rm → Rm is the transfer function

I Key question, given a training example (xi, yi), define

L(θ, v) = − log p(yi|xi; θ, v)

How do we calculate derivatives such as dL(θ,v)
dWk,j

?



A Simple Version of Stochastic Gradient Descent

(Continued)

Algorithm:

I For t = 1 . . . T

I Select an integer i uniformly at random from {1 . . . n}
I Define L(θ, v) = − log p(yi|xi; θ, v)
I For each parameter θj , θj = θj − ηt × dL(θ,v)

dθj
I For each label y, for each parameter vk(y),

vk(y) = vk(y)− ηt × dL(θ,v)
dvk(y)

I For each label y, γy = γy − ηt × dL(θ,v)
dγy

Output: parameters θ and v



Overview

I Introduction

I The chain rule

I Derivatives in a single-layer neural network

I Computational graphs

I Backpropagation in computational graphs

I Justification for backpropagation



Partial Derivatives
Assume we have scalar variables z1, z2 . . . zn, and y, and a
function f , and we define

y = f(z1, z2, . . . zn)

Then the partial derivative of f with respect to zi is written as

∂f(z1, z2, . . . zn)

∂zi

We will also write the partial derivative as

∂y

∂zi

∣∣∣∣f
z1...zm

which can be read as “the partial derivative of y with respect to
zi, under function f , at values z1 . . . zm”



Partial Derivatives (continued)

We will also write the partial derivative as

∂y

∂zi

∣∣∣∣f
z1...zm

which can be read as “the partial derivative of y with respect to
zi, under function f , at values z1 . . . zm”

The notation including f is non-standard, but helps to alleviate a
lot of potential confusion...

We will sometimes drop f and/or z1 . . . zm when this is clear from
context



The Chain Rule

Assume we have equations

y = f(z), z = g(x)

h(x) = f(g(x))

Then
dh(x)

dx
=
df(g(x))

dz
× dg(x)

dx

Or equivalently,
∂y

∂x

∣∣∣∣h
x

=
∂y

∂z

∣∣∣∣f
g(x)

× ∂z

∂x

∣∣∣∣g
x



The Chain Rule
Assume we have equations

y = f(z), z = g(x)

h(x) = f(g(x))

then
dh(x)

dx
=
df(g(x))

dz
× dg(x)

dx

For example, assume f(z) = z2 and g(x) = x3. Assume in
addition that x = 2. Then:

z = x3 = 8,
dg(x)

dx
= 3x2 = 12, f(z) = z2 = 64,

df(z)

dz
= 2z = 16

from which it follows that dh(x)
dx

= 12× 16 = 192



The Chain Rule (continued)
Assume we have equations

y = f(z)

z1 = g1(x), z2 = g2(x), . . . , zn = gn(x)

For some functions f , g1 . . . gn, where z is a vector z ∈ Rn, and x
is a vector x ∈ Rm.
Define the function

h(x) = f(g1(x), g2(x), . . . gn(x))

Then we have
∂h(x)

∂xj
=
∑
i

∂f(z)

∂zi

∂gi(x)

∂xj

where z is the vector g1(x), g2(x), . . . gn(x).



The Jacobian Matrix
Assume we have a function f : Rn → Rm that takes some vector
x ∈ Rn and then returns a vector y ∈ Rm:

y = f(x)

The Jacobian J ∈ Rm×n is defined as the matrix with entries

Ji,j =
∂fi(x)

∂xj

Hence the Jacobian contains all partial derivatives of the function.

We will also use
∂y

∂x

∣∣∣∣f
x

for vectors y and x to refer to the Jacobian matrix with respect to
a function f mapping x to y, evaluated at x
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An Example of the Jacobian: The LOG-SOFTMAX

Function

We define LS : RK → RK to be the function such that for
k = 1 . . . K,

LSk(l) = log

(
exp{lk}∑
k′ exp{lk′}

)
= lk − log

∑
k′

exp{lk′}

The Jacobian then has entries[
∂LS(l)

∂l

]
k,k′

=
∂LSk(l)

∂lk′
= [[k = k′]]− exp{lk′}∑

k′′ exp{lk′′}

where [[k = k′]] = 1 if k = k′, 0 otherwise.



The Chain Rule (continued)

Assume we have equations

y = f(z1, z2, . . . zn)

zi = gi(x1, x2, . . . xm)

for i = 1 . . . n where y is a vector, zi for all i are vectors, and xj

for all j are vectors. Define h(x1 . . . xm) to be the composition of
f and g, so y = h(x1 . . . xm). Then

∂y

∂xj

∣∣∣∣h︸ ︷︷ ︸
d(y)×d(xj)

=
n∑
i=1

∂y

∂zi

∣∣∣∣f︸ ︷︷ ︸
d(y)×d(zi)

× ∂zi

∂xj

∣∣∣∣gi︸ ︷︷ ︸
d(zi)×d(xj)

where d(v) is the dimensionality of vector v.
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Derivatives in a Feedforward Network

Definitions: The set of possible labels is Y . We define K = |Y|.
g : Rm → Rm is a transfer function. We define
LS = LOG-SOFTMAX.

Inputs: xi ∈ Rd, yi ∈ Y , W ∈ Rm×d, b ∈ Rm, V ∈ RK×m, γ ∈ RK .

Equations:

z ∈ Rm = Wxi + b

h ∈ Rm = g(z)

l ∈ RK = V h+ γ

q ∈ RK = LS(l)

o ∈ R = −qyi



Jacobian Involving Matrices

Equations:

z ∈ Rm = Wxi + b

h ∈ Rm = g(z)

l ∈ RK = V h+ γ

q ∈ RK = LS(l)

o ∈ R = −qyi

If W ∈ Rm×d, z ∈ Rm, the Jacobian

∂z

∂W
is a matrix of dimension m×m′ where m′ = (m× d) is the
number of entries in W . So we treat W as a vector with (m× d)
elements.



Local Functions

Equations:

z ∈ Rm = Wxi + b

h ∈ Rm = g(z)

l ∈ RK = V h+ γ

q ∈ RK = LS(l)

o ∈ R = −qyi

Leaf variables: W , xi, b, V , γ, yi

Intermediate variables: z, h, l, q

Output variable: o

Each intermediate variable has a “Local” function:

f z(W,xi, b) = Wxi + b, fh(z) = g(z), f l(h) = V h+ γ, . . .



Global Functions

Equations:

z ∈ Rm = Wxi + b

h ∈ Rm = g(z)

l ∈ RK = V h+ γ

q ∈ RK = LS(l)

o ∈ R = −qyi

Leaf variables: W , xi, b, V , γ, yi

Intermediate variables: z, h, l, q

Output variable: o

Global functions: for the output variable o, we define f̄ o to be the
function that maps the leaf values W , xi, b, V , γ, yi to the
output value o = f̄ o(W,xi, b, V, γ, yi). We use similar definitions
for f̄ z(W,xi, b, V, γ, yi), f̄h(W,xi, b, V, γ, yi), etc.



Applying the Chain Rule

Equations:

z ∈ Rm = Wxi + b

h ∈ Rm = g(z)

l ∈ RK = V h+ γ

q ∈ RK = LS(l)

o ∈ R = −qyi

Derivative:

∂o

∂W

∣∣∣∣f̄o =

∂o

∂q

∣∣∣∣fo × ∂q

∂W

∣∣∣∣f̄q
=

∂o

∂q

∣∣∣∣fo × ∂q

∂l

∣∣∣∣fq × ∂l

∂W

∣∣∣∣f̄ l
=

∂o

∂q

∣∣∣∣fo × ∂q

∂l

∣∣∣∣fq × ∂l

∂h

∣∣∣∣f l × ∂h

∂W

∣∣∣∣f̄h
=

∂o

∂q

∣∣∣∣fo × ∂q

∂l

∣∣∣∣fq × ∂l

∂h

∣∣∣∣f l × ∂h

∂z

∣∣∣∣fh × ∂z

∂W

∣∣∣∣f̄z
=

∂o

∂q

∣∣∣∣fo × ∂q

∂l

∣∣∣∣fq × ∂l

∂h

∣∣∣∣f l × ∂h

∂z

∣∣∣∣fh × ∂z

∂W

∣∣∣∣fz
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Another Derivative

Equations:

z ∈ Rm = Wxi + b

h ∈ Rm = g(z)

l ∈ RK = V h+ γ

q ∈ RK = LS(l)

o ∈ R = −qyi

∂o

∂V

∣∣∣∣f̄o =
∂o

∂q

∣∣∣∣fo × ∂q

∂l

∣∣∣∣fq × ∂l

∂v

∣∣∣∣f l



A Computational Graph

Equations:

z ∈ Rm = Wxi + b

h ∈ Rm = g(z)

l ∈ RK = V h+ γ

q ∈ RK = LS(l)

o ∈ R = −qyi
Derivatives:

∂o

∂V

∣∣∣∣f̄o =
∂o

∂q

∣∣∣∣fo × ∂q

∂l

∣∣∣∣fq × ∂l

∂v

∣∣∣∣f l
∂o

∂W

∣∣∣∣f̄o =
∂o

∂q

∣∣∣∣fo × ∂q

∂l

∣∣∣∣fq × ∂l

∂h

∣∣∣∣f l × ∂h

∂z

∣∣∣∣fh × ∂z

∂W

∣∣∣∣fz
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Computational Graphs: a Formal Definition

A computational graph consists of:

I An integer n specifying the number of vertices in the graph.
An integer l < n specifying the number of leaves in the
graph. Vertices 1 . . . l are leaves in the graph. Vertex n is a
special “output” vertex.

I A set of directed edges E. Each member of E is an ordered
pair (j, i) where j ∈ {1 . . . n}, i ∈ {(l + 1) . . . n}, and i > j.
For any i we define π(i) to be the set of parents of i in the
graph:

π(i) = {j : (j, i) ∈ E}



Computational Graphs (continued)

I A variable ui ∈ Rdi is associated with each vertex in the
graph. Here di for i = 1 . . . n specifies the dimensionality of
ui. We assume dn = 1, hence the output variable is a scalar.

I A function f i is associated with each non-leaf vertex in the
graph (i ∈ {(l + 1) . . . n}). The function maps a vector Ai

defined as
Ai = 〈uj|j ∈ π(i)〉

to a vector f i(Ai) ∈ Rdi



An Example

I Define n = 4, l = 2

I Define di = 1 for all i (all variables are scalars)

I Define E = {(1, 3), (2, 3), (2, 4), (3, 4)}
I Define

f 3(u1, u2) = u1 + u2

f 4(u2, u3) = u2 × u3



Two Questions

I Note that the computational graph defines a function, which
we call f̄n, from the values of the leaf variables to the output
variable:

un = f̄n(u1 . . . ul)

I Given a computational graph, and values for the leaf variables
u1 . . . ul:

1. How do we compute the output un?
2. How do we compute the partial derivatives

∂un

∂ui

∣∣∣∣f̄n
for all i ∈ {1 . . . l} ?



Forward Computation

Input: Values for leaf variables u1 . . . ul

Algorithm:

I For i = (l + 1) . . . n
ui = f i(Ai)

where
Ai = 〈uj|j ∈ π(i)〉



An Example

I Define n = 4, l = 2

I Define di = 1 for all i (all variables are scalars)

I Define E = {(1, 3), (2, 3), (2, 4), (3, 4)}
I Define

f 3(u1, u2) = u1 + u2

f 4(u2, u3) = u2 × u3



Defining and Calculating Derivatives

I For any k ∈ {(l + 1) . . . n}, there is a function f̄k such that

uk = f̄k(u1, u2, . . . ul)

I We want to calculate

∂un

∂uj

∣∣∣∣f̄n
u1...ul

for j = 1 . . . l



Computational Graphs (continued)

I A function J j→i is associated with each edge (j, i) ∈ E. The
function maps a vector Ai defined as

Ai = 〈uj|j ∈ π(i)〉

to a matrix J j→i(Ai) ∈ Rdi×dj .

J j→i(Ai) =
∂f i(Ai)

∂uj
=

∂ui

∂uj

∣∣∣∣f i
Ai



Forward Pass

Input: Values for leaf variables u1 . . . ul

Algorithm:

I For i = (l + 1) . . . n

Ai = 〈uj|j ∈ π(i)〉

ui = f i(Ai)



Backward Pass

I pn = 1

I For j = (n− 1) . . . 1:

pj =
∑

i:(j,i)∈E

piJ j→i(Ai)

I Output: pi for i = 1 . . . l satisfying

pi =
∂o

∂ui

∣∣∣∣f̄n
u1...ul



An Example

pn = 1
For j = (n− 1) . . . 1:

pj =
∑

i:(j,i)∈E

piJ j→i(Ai)
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Products of Jacobians over Paths in the Graph

I A directed path between vertices j and k is a sequence of
edges (i1, i2), (i2, i3), . . . (in−1, in) with n ≥ 2 such that each
edge is in E, and i1 = j, and in = k.

I For any j, k, we write P(j, k) to denote the set of all
directed paths between j and k

I For convenience we define Da→b = Ja→b(Ab) for all edges
(a, b).

I Theorem: for any j ∈ {1 . . . l}, k ∈ {(l + 1) . . . n},

∂uk

∂uj

∣∣∣∣f̄k =
∑

p∈P(j,k)

∏
(a,b)∈p

Da→b



An Example

∂uk

∂uj

∣∣∣∣f̄k =
∑

p∈P(j,k)

∏
(a,b)∈p

Da→b



Proof Sketch
I For any j, j′, k, we write P(j, j′, k) to denote the set of all

directed paths between j and k such that the last edge in the
sequence is (j′, k).

I Proof sketch: By induction over the graph. By the chain rule
we have

∂uk

∂uj

∣∣∣∣f̄k =
∑

j′:(j′,k)∈E

Dj′→k × ∂uj
′

∂uj

∣∣∣∣f̄
j′

=
∑

j′:(j′,k)∈E

Dj′→k ×
∑

p∈P(j,j′)

∏
(a,b)∈p

Da→b

=
∑

j′:(j′,k)∈E

∑
p∈P(j,j′,k)

∏
(a,b)∈p

Da→b

=
∑

p∈P(j,k)

∏
(a,b)∈p

Da→b



Backward Pass

I pn = 1

I For j = (n− 1) . . . 1:

pj =
∑

i:(j,i)∈E

piDj→i

I Output: pi for i = 1 . . . l satisfying

pi =
∂o

∂ui

∣∣∣∣f̄o
u1,u2,...ul



Correctness of the Backward Pass

I Theorem: For all pi we have

pi =
∑

p∈P(i,n)

∏
(a,b)∈p

Da→b

It follows that for any i ∈ {1 . . . l},

pi =
∂un

∂ui

∣∣∣∣f̄n



Proof
I Theorem: For all pi we have

pi =
∑

p∈P(i,n)

∏
(a,b)∈p

Da→b

I Proof sketch: by induction on
i = n, i = (n− 1), i = (n− 2), . . . i = 1. For i = n we have
pn = 1 so the proposition is true. For j = (n− 1) . . . 1 we
have

pj =
∑

i:(j,i)∈E

piDj→i

=
∑

i:(j,i)∈E

 ∑
p∈P(i,n)

∏
(a,b)∈p

Da→b

Dj→i =
∑

p∈P(j,n)

∏
(a,b)∈p

Da→b


