
Feedforward Neural Networks

Michael Collins, Columbia University



Recap: Log-linear Models
A log-linear model takes the following form:

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

I f(x, y) is the representation of (x, y)

I Advantage: f(x, y) is highly flexible in terms of the features
that can be included

I Disadvantage: can be hard to design features by hand

I Neural networks allow the representation itself to be
learned. Recent empirical results across a broad set of
domains have shown that learned representations in neural
networks can give very significant improvements in accuracy
over hand-engineered features.



Example 1: The Language Modeling Problem

I wi is the i’th word in a document

I Estimate a distribution p(wi|w1, w2, . . . wi−1) given previous
“history” w1, . . . , wi−1.

I E.g., w1, . . . , wi−1 =

Third, the notion “grammatical in English” cannot be
identified in any way with the notion “high order of
statistical approximation to English”. It is fair to assume
that neither sentence (1) nor (2) (nor indeed any part of
these sentences) has ever occurred in an English
discourse. Hence, in any statistical



Example 2: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

• There are many possible tags in the position ??
{NN, NNS, Vt, Vi, IN, DT, . . . }

• The task: model the distribution

p(ti|t1, . . . , ti−1, w1 . . . wn)

where ti is the i’th tag in the sequence, wi is the i’th word



Overview

I Basic definitions

I Stochastic gradient descent

I Defining the input to a neural network

I A single neuron

I A single-layer feedforward network

I Motivation: the XOR problem



An Alternative Form for Log-Linear Models
Old form:

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

(1)

New form:

p(y|x; v) = exp (v(y) · f(x) + γy)∑
y′∈Y exp (v(y

′) · f(x) + γy′)
(2)

I Feature vector f(x) maps input x to f(x) ∈ RD.

I Parameters: v(y) ∈ RD, γy ∈ R for each y ∈ Y .

I The score v · f(x, y) in Eq. 1 has essentially been replaced by
v(y) · f(x) + γy in Eq. 2.

I We will use v to refer to the set of all parameter vectors and
bias values: that is, v = {(v(y), γy) : y ∈ Y}



Introducing Learned Representations

p(y|x; θ, v) = exp (v(y) · φ(x; θ) + γy)∑
y′∈Y exp (v(y

′) · φ(x; θ) + γy′)
(3)

I Replaced f(x) by φ(x; θ) where θ are some additional
parameters of the model

I The parameter values θ will be estimated from training
examples: the representation of x is then “learned”

I In this lecture we’ll show how feedforward neural networks
can be used to define φ(x; θ).



Definition (Multi-Class Feedforward Models)
A multi-class feedforward model consists of:

I A set X of possible inputs. A finite set Y of possible labels. A
positive integer D specifying the number of features in the
feedforward representation.

I A parameter vector θ defining the feedforward parameters of the
network. We use Ω to refer to the set of possible values for θ.

I A function φ : X × Ω→ RD that maps any (x, θ) pair to a
“feedforward representation” φ(x; θ).

I For each label y ∈ Y, a parameter vector v(y) ∈ RD, and a bias
value γy ∈ R.

For any x ∈ X , y ∈ Y, p(y|x; θ, v) =
exp (v(y) · φ(x; θ) + γy)∑

y′∈Y exp
(
v(y′) · φ(x; θ) + γy′

)



Two Questions

I How can we define the feedforward representation φ(x; θ)?

I Given training examples (xi, yi) for i = 1 . . . n, how can we
train the parameters θ and v?



Overview

I Basic definitions

I Stochastic gradient descent

I Defining the input to a neural network

I A single neuron

I A single-layer feedforward network

I Motivation: the XOR problem



A Simple Version of Stochastic Gradient Descent

Inputs: Training examples (xi, yi) for i = 1 . . . n. A feedforward
representation φ(x; θ). An integer T specifying the number of
updates. A sequence of learning rate values η1 . . . ηT where each
ηt > 0.
Initialization: Set v and θ to random parameter values.



A Simple Version of Stochastic Gradient Descent

(Continued)

Algorithm:

I For t = 1 . . . T

I Select an integer i uniformly at random from {1 . . . n}
I Define L(θ, v) = − log p(yi|xi; θ, v)
I For each parameter θj , θj = θj − ηt × dL(θ,v)

dθj
I For each label y, for each parameter vk(y),

vk(y) = vk(y)− ηt × dL(θ,v)
dvk(y)

I For each label y, γy = γy − ηt × dL(θ,v)
dγy

Output: parameters θ and v



Overview

I Basic definitions

I Stochastic gradient descent

I Defining the input to a neural network

I A single neuron

I A single-layer feedforward network

I Motivation: the XOR problem



Defining the Input to a Feedforward Network

I Given an input x, we need to define a function f(x) ∈ Rd

that specifies the input to the network

I In general it is assumed that the representation f(x) is
“simple”, not requiring careful hand-engineering.

I The neural network will take f(x) as input, and will produce
a representation φ(x; θ) that depends on the input x and the
parameters θ.



Linear Models

We could build a log-linear model using f(x) as the
representation:

p(y|x; v) = exp{v(y) · f(x) + γy}∑
y′ exp{v(y′) · f(x) + γy′}

(4)

This is a “linear” model, because the score v(y) · f(x) is linear in
the input features f(x). The general assumption is that a model
of this form will perform poorly or at least non-optimally. Neural
networks enable “non-linear” models that often perform at much
higher levels of accuracy.



An Example: Digit Classification

I Task is to map an image x to a label y

I Each image contains a hand-written digit in the set
{0, 1, 2, . . . 9}

I The representation f(x) simply represents pixel values in the
image.

I For example if the image is 16× 16 grey-scale pixels, where
each pixel takes some value indicating how bright it is, we
would have d = 256, with f(x) just being the list of values
for the 256 different pixels in the image.

I Linear models under this representation perform poorly,
neural networks give much better performance



Simplifying Notation

I From now on assume that x = f(x): that is, the input x is
already defined as a vector

I This will simplify notation

I But remember that when using a neural network you will
have to define a representation of the inputs



Overview

I Basic definitions

I Stochastic gradient descent

I Defining the input to a neural network

I A single neuron

I A single-layer feedforward network

I Motivation: the XOR problem



A Single Neuron

I A neuron is defined by a weight vector w ∈ Rd, a bias b ∈ R,
and a transfer function g : R→ R.

I The neuron maps an input vector x ∈ Rd to an output h as
follows:

h = g(w · x+ b)

I The vector w ∈ Rd and scalar b ∈ R are parameters of the
model, which are learned from training examples.



Transfer Functions
I It is important that the transfer function g(z) is non-linear
I A linear transfer function would be

g(z) = α× z + β

for some constants α and β



The Rectified Linear Unit (ReLU) Transfer Function
The ReLU transfer function is defined as

g(z) = {z if z ≥ 0, or 0 if z < 0}
Or equivalently, g(z) = max{0, z}
It follows that the derivative is

dg(z)

dz
= {1 if z > 0, or 0 if z < 0, or undefined if z = 0}



The tanh Transfer Function
The tanh transfer function is defined as

g(z) =
e2z − 1

e2z + 1

It can be shown that the derivative is
dg(z)

dz
= (1− g(z))2



Calculating Derivatives

Given
h = g(w · x+ b)

it will be useful to calculate derivatives

dh

dwj

for the parameters w1, w2, . . . wd, and also

dh

db

for the bias parameter b



Calculating Derivatives (Continued)

We can use the chain rule of differentiation. First introduce an
intermediate variable z ∈ R:

z = w · x+ b, h = g(z)

Then by the chain rule we have

dh

dwj
=
dh

dz
× dz

dwj
=
dg(z)

dz
× xj

Here we have used dh
dz

= dg(z)
dz

, dz
dwj

= xj.



Calculating Derivatives (Continued)

We can use the chain rule of differentiation. First introduce an
intermediate variable z ∈ R:

z = w · x+ b, h = g(z)

Then by the chain rule we have

dh

db
=
dh

dz
× dz

db
=
dg(z)

dz
× 1

Here we have used dh
dz

= dg(z)
dz

, and dz
db

= 1.



Definition (Single-Layer Feedforward Representation)
A single-layer feedforward representation consists of the following:

I An integer d specifying the input dimension. Each input to
the network is a vector x ∈ Rd.

I An integer m specifying the number of hidden units.

I A parameter matrix W ∈ Rm×d. We use the vector Wk ∈ Rd

for each k ∈ {1, 2, . . .m} to refer to the k’th row of W .

I A vector b ∈ Rm of bias parameters.

I A transfer function g : R→ R. Common choices are
g(x) = ReLU(x) or g(x) = tanh(x).



Definition (Single-Layer Feedforward Representation
(Continued))
We then define the following:

I For k = 1 . . .m, the input to the k’th neuron is
zk = Wk · x+ bk.

I For k = 1 . . .m, the output from the k’th neuron is
hk = g(zk).

I Finally, define the vector φ(x; θ) ∈ Rm as φk(x; θ) = hk for
k = 1 . . .m. Here θ denotes the parameters W ∈ Rm×d and
b ∈ Rm. Hence θ contains m× (d+ 1) parameters in total.



Some Intuition

The neural network employs m units, each with their own
parameters Wk and bk, and these neurons are used to construct a
“hidden” representation h ∈ Rm.



Matrix Form

We can for example replace the operation

zk = Wk · x+ b for k = 1 . . .m

with
z = Wx+ b

where the dimensions are as follows (note that an m-dimensional
column vector is equivalent to a matrix of dimension m× 1):

z︸︷︷︸
m×1

= W︸︷︷︸
m×d

x︸︷︷︸
d×1︸ ︷︷ ︸

m×1

+ b︸︷︷︸
m×1



Definition (Single-Layer Feedforward Representation
(Matrix Form))
A single-layer feedforward representation consists of the following:

I An integer d specifying the input dimension. Each input to
the network is a vector x ∈ Rd.

I An integer m specifying the number of hidden units.

I A matrix of parameters W ∈ Rm×d.

I A vector of bias parameters b ∈ Rm

I A transfer function g : Rm → Rm. Common choices would be
to define g(z) to be a vector with components
ReLU(z1),ReLU(z2), . . . ,ReLU(zm) or
tanh(z1), tanh(z2), . . . , tanh(zm).



Definition (Single-Layer Feedforward Representation
(Matrix Form) (Continued))
We then define the following:

I The vector of inputs to the hidden layer z ∈ Rm is defined as
z = Wx+ b.

I The vector of outputs from the hidden layer h ∈ Rm is
defined as h = g(z)

I Finally, define φ(x; θ) = h. Here the parameters θ contain
the matrix W and the vector b.

I It follows that
φ(x; θ) = g(Wx+ b)



Overview

I Basic definitions

I Stochastic gradient descent

I Defining the input to a neural network

I A single neuron

I A single-layer feedforward network

I Motivation: the XOR problem



A Motivating Example: the XOR Problem (from Deep

Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville)

We will assume a training set where each label is in the set
Y = {−1,+1}, and there are 4 training examples, as follows:

x1 = [0, 0], y1 = −1
x2 = [0, 1], y2 = 1

x3 = [1, 0], y3 = 1

x4 = [1, 1], y4 = −1



A Useful Lemma
Assume we have a model of the form

p(y|x; v) = exp{v(y) · x+ γy}∑
y exp{v(y) · x+ γy }

and the set of possible labels is Y = {−1,+1}. Then for any x,

p(+1|x; v) > 0.5

if and only if
u · x+ γ > 0

where u = v(+1)− v(−1) and γ = γ+1− γ−1. Similarly for any x,

p(−1|x; v) > 0.5

if and only if u · x+ γ < 0



Proof: We have

p(+1|x; v) =
exp{v(+1) · x+ γ+1}

exp{v(+1) · x+ γ+1}+ exp{v(−1) · x+ γ−1}

=
1

1 + exp{−(u · x+ γ)}

It follows that p(+1|x; v) > 0.5 if and only if
exp{−(u · x+ γ)} < 1 from which it follows that u · x+ γ > 0.
A similar proof applies to the condition p(−1|x; v) > 0.5.



Theorem
Assume we have examples (xi, yi) for i = 1 . . . 4 as defined above.
Assume we have a model of the form

p(y|x; v) = exp{v(y) · x+ γy}∑
y exp{v(y) · x+ γy }

Then there are no parameter settings for v(+1), v(−1), γ+1, γ−1
such that

p(yi|xi; v) > 0.5 for i = 1 . . . 4



Proof Sketch:
From the previous lemma, p(yi = 1|xi; v) > 0.5 if and only if

u · xi + γ > 0

where u = v(+1)− v(−1) and γ = γ+1 − γ−1.
Similarly p(yi = −1|xi; v) > 0.5 if and only if

u · xi + γ < 0

where u = v(+1)− v(−1) and γ = γ+1 − γ−1.
Hence to satisfy p(yi|xi; v) > 0.5 for i = 1 . . . 4, there must exist
parameters v and γ such that

u · [0, 0] + γ < 0 (5)

u · [0, 1] + γ > 0 (6)

u · [1, 0] + γ > 0 (7)

u · [1, 1] + γ < 0 (8)



The Constraints can not be Satisfied

u · [0, 0] + γ < 0

u · [0, 1] + γ > 0

u · [1, 0] + γ > 0

u · [1, 1] + γ < 0



The Constraints can not be Satisfied

u · [0, 0] + γ < 0

u · [0, 1] + γ > 0

u · [1, 0] + γ > 0

u · [1, 1] + γ < 0



Theorem
Assume we have examples (xi, yi) for i = 1 . . . 4 as defined above.
Assume we have a model of the form

p(y|x; θ, v) = exp{v(y) · φ(x; θ) + γy}∑
y exp{v(y) · φ(x; θ) + γy}

where φ(x; θ) is defined by a single layer neural network with
m = 2 hidden units, and the ReLU(z) activation function. Then
there are parameter settings for v(0), v(1), γ0, γ1, θ such that

p(yi|xi; v) > 0.5 for i = 1 . . . 4



Proof Sketch: Define W1 = [1, 1], W2 = [1, 1], b1 = 0, b2 = −1.
Then for each input x we can calculate the value for the vectors z
and h corresponding to the inputs and the outputs from the
hidden layer:

x = [0, 0] ⇒ z = [0,−1] ⇒ h = [0, 0]

x = [1, 0] ⇒ z = [1, 0] ⇒ h = [1, 0]

x = [0, 1] ⇒ z = [1, 0] ⇒ h = [1, 0]

x = [1, 1] ⇒ z = [2, 1] ⇒ h = [2, 1]



Proof Sketch (continued)

Hence to satisfy p(yi|xi; v) > 0.5 for i = 1 . . . 4, there must exist
parameters u = v(+1)− v(−1) and γ = γ+1 − γ−1 such that

u · [0, 0] + γ < 0 (9)

u · [1, 0] + γ > 0 (10)

u · [1, 0] + γ > 0 (11)

u · [2, 1] + γ < 0 (12)

It can be verified that u = [1,−2], γ = −0.5 satisifies these
contraints.


