
NLP Homework: Dependency Parsing with

Feed-Forward Neural Network

Submission Deadline: Monday Dec. 11th, 5 pm

1 Background on Dependency Parsing

Dependency trees are one of the main representations used in the syntactic
analysis of sentences.1 One way to recover a dependency tree for a sentence is
through transition-based methods. In transition-based parsing, a tree is con-
verted to a sequence of shift-reduce actions and the parser decides between
possible actions depending on the current configuration of the partial tree.

I live in New York city .
PRP VBP IN NNP NNP NN .

root

nsubj prep

pobj

nn

nn

punct

Figure 1: An example dependency tree from the Wall Street Journal treebank.

In this homework, you are going to train a dependency parsing model based
on the “arc-standard” system [2]. In the arc-standard system, each parse state
is a configuration C = {�,�,↵}, in which � is a stack of processed words, � is an
ordered list of unprocessed words and ↵ is a set of already recovered dependency

relations j
l�! i (ith word is headed by the jth word with a dependency label l).

The initial configuration is

C(0) = {� = [root0],� = [w1, · · · , wn],↵ = {}}

where root is the dummy root node of the sentence and [w1 . . . wn] are the words
in the sentence. One can theoretically show that the arc-standard parser can

1The definitions and explanations in this section are meant to be very brief. This is mainly
because you will not really implement the parsing actions by yourself and we have already
provided that for you. If you are interested, you can look at the corresponding chapter in the
NLP textbook: https://web.stanford.edu/

~

jurafsky/slp3/14.pdf.

1

Submission deadline: November 28th, 5pm

Initialization {� = [root],� = [w1, · · · , wn],↵ = {}}
Termination {� = [root],� = [],↵ = {j l�! i; 0  j  n, 8i 2 [1, · · · , n]}}

Shift {�, i|�,↵} ! {�|i,�,↵}
Left-Arc

label {�|ij,�,↵} ! {�|j,�,↵ [{j label���! i}}
Right-Arc

label {�|ij,�,↵} ! {�|i,�,↵ [{i label���! j}}

Figure 2: Initial and terminal states and actions in the arc-standard transition
system. The notation �|ij means a stack where the top words are �0 = j and
�1 = i.

Action � � h
l�! d

Shift [root0] [I1,live2, in3, New4, York5, city6, .7]

Shift [root0, I1] [live2, in3, New4, York5, city6, .7]

Left-Arc

nsubj

[root0, I1, live2] [in3, New4, York5, city6, .7] 2

nsubj����! 1

Shift [root0, live2] [in3, New4, York5, city6, .7]

Shift [root0, live2, in3] [New4, York5, city6, .7]

Shift [root0, live2, in3, New4] [York5, city6, .7]

Shift [root0, live2, in3, New4, York5] [city6, .7]

Left-Arc

nn

[root0, live2, in3, New4, York5, city6] [.7] 6

nn��! 5

Left-Arc

nn

[root0, live2, in3, New4, city6] [.7] 6

nn��! 4

Right-Arc

pobj

[root0, live2, in3, city6] [.7] 3

pobj���! 6

Right-Arc

prep

[root0, live2, in3] [.7] 2

prep���! 3

Shift [root0, live2] [.7]

Right-Arc

punct

[root0, live2, .7] [] 2

punct����! 7

Right-Arc

root

[root0, live2] [] 0

root���! 2

Terminal [root0] []

Figure 3: A sample action sequence with the arc-standard actions (Figure 2)
for the tree in Figure 1.

reach the terminal state after applying exactly 2n actions where n is the number
of words in the sentence. The final state will be

C(2n) = {� = [root],� = [],↵ = {j l�! i; 0  j  n, 8i 2 [1, · · · , n]}}

There are three main actions that change the state of a configuration in the
algorithm: shift, left-arc and right-arc. For every specific dependency relation
(e.g. subject or object), the left-arc and right-arc actions become fine-grained
(e.g. RIGHT-ARC:nsubj, RIGHT-ARC:pobj, etc.). Figure 2 shows the condi-
tions for applying those actions. Figure 3 shows a sequence of correct transitions
for the tree in Figure 1.

2

2 Learning a Parser from Transitions

It is straightforward to train a model based on transitions extracted from trees
in each sentence. A python script is provided for you to convert dependency
trees to training instances, so you need not worry about the details of converting
dependencies to training instances.

2.1 Input Layer

We follow the approach of [1, 3] and use three kinds of features:

• Word features: 20 types of word features.

• Part-of-speech features: 20 types of POS features.

• Dependency label features: 12 types of dependency features.

The data files should have 53 columns (space separated), where the first
20 are word-based features, the next 20 are the POS features, the next 12 are
dependency features and the last column is the gold label (action).

2.2 Embedding Layer

Based on the the input layer features �(Di) for data Di, the model should use
the following embedding (lookup) parameters:

• Word embedding (Ew) with dimension dw. If the training corpus has Nw

unique words (including the < null >, < root >, and < unk > symbols),
the size of the embedding dictionary will be dw⇥Nw .

• Part-of-speech embedding (Et) with dimension dt. If the training corpus
has Nt unique POS tags (including the < null > and < root > symbols),
the size of the embedding dictionary will be dt⇥Nt .

• Dependency label embedding (El) with dimension dl. If the training
corpus has Nl unique dependency labels (including the < null > and
< root > symbols), the size of the embedding dictionary will be dl⇥Nl .

Thus the output from the embedding layer e, is the concatenation of all
embedding values for the specific data instance.

de = 20(dw + dt) + 12dl

2.3 First Hidden Layer

The output of the embedding layer e should be fed to the first hidden layer with
a rectified linear unit (RELU) activation:

h1 = RELU(W 1
e+ b

1) = max{0,W 1
e+ b

1}
where W

1 2 dh1⇥de and b

1 2 dh1 .

3

2.4 Second Hidden Layer

The output of the first hidden layer h1 should be fed to the second hidden layer
with a rectified linear unit (RELU) activation:

h2 = RELU(W 2
h1 + b

2) = max{0,W 2
h1 + b

2}

where W

2 2 dh2⇥dh1 and b

2 2 dh2 .

2.5 Output Layer

Finally, the output of the second hidden layer h2 should be fed to the output
layer with a softmax activation function:

q = softmax(V h2 + �)

where V 2 A⇥dh2 and � 2 A. A is the number of possible actions in the
arc-standard algorithm.

Note that in decoding, you can find the best action by finding the argmax
of the output layer without using the softmax function:

y

⇤ = arg max
i2[1...A]

li

and
li = (V h2 + �)i

The objective function is to minimize the negative log-likelihood of the data
given the model parameters (�

P
i log qyi). It is usually a good practice to

minimize the objective for random mini-batches from the data.

3 Step by Step Guideline

This section provides a step by step guideline to train a deep neural network
for transition-based parsing. You can download the code from the following
repository: https://github.com/rasoolims/nlp_hw_dep.

3.1 Vocabulary Creation for Features

Deep networks work with vectors, not strings. Therefore, first you have to
create vocabularies for word features, POS features, dependency label features
and parser actions.

Run the following command:

>> python src/gen vocab.py trees/train.conll data/vocabs

After that, you should have the following files:

4

• data/vocabs.word: This file contains indices for words. Remember that
< null > is not a real word but since there are some cases that a word
feature is null, we also learn embedding for a null word. Note that <

root > is a word feature for the root token. Any word that does not occur
in this vocabulary should be mapped to the value corresponding to the
< unk > word in this file.

• data/vocabs.pos: Similar to the word vocabulary but this is for part-
of-speech tags. There is no notion of unknown in POS features.

• data/vocabs.labels: Similar to the word vocabulary but this is for de-
pendency labels. There is no notion of unknown in dependency label
features.

• data/vocabs.actions: This is a string to index conversion for the actions
(this should be used for the output layer).

3.2 Data Generation

The original tree files cannot be directly used for training. You should use the
following command to convert the training and development datasets to data
files:

>> python src/gen.py trees/train.conll data/train.data

>> python src/gen.py trees/dev.conll data/dev.data

Each line shows one data instance. The first 20 columns are for word-
based features. The second 20 columns are for the POS-based features. The
next 12 features are for dependency labels. The last column shows the action.
Remember that, when you want to use these features in implementation, you
should convert them to integer values, based the vocabularies generated in the
previous subsection.

3.3 Neural Network Implementation

Now it is time for implementing a neural network model. We recommend you to
implement it with the Dynet library2 because we can help you with details but if
you are more familiar with other libraries such as Pytorch, Chainer, TensorFlow,
Keras, Ca↵e, CNTK, DeepLearning4J, and Thiano, that is totally fine. Feel free
to use any library or implementation of feed-forward neural networks. You can
mimic the same implementation style as in the POS tagger implementation in
the following repository: https://github.com/rasoolims/ff_tagger.

2
https://github.com/clab/dynet: take a look at its sample codes in the paper: https:

//arxiv.org/pdf/1701.03980.pdf and its API reference: https://github.com/clab/dynet/

blob/master/examples/jupyter-tutorials/API.ipynb.

5

3.4 Decoding

After you are done with training a model, you should be able to parse sentences
directly from tree files. We provided wrappers for you to be able to run a
decoder. Bellow is a container for your decoder in the “depModel.py” file. You
can change the content of the class (especially the score function), to make it
work as a correct decoder.

1 import os , sys
2 from decoder import ⇤
3

4 c l a s s DepModel :
5 de f i n i t (s e l f) :
6 ’ ’ ’
7 You can add more arguments f o r examples a c t i on s and

model paths .
8 You need to load your model here .
9 a c t i on s : p rov ide s i n d i c e s f o r a c t i on s .

10 i t has the same order as the data/vocabs . a c t i on s f i l e .
11 ’ ’ ’
12 # i f you p r e f e r to have your own index f o r ac t i ons , change

t h i s .
13 s e l f . a c t i on s = [’SHIFT ’ , ’LEFT�ARC: cc ’ , . . . , ’RIGHT�ARC: root ’]
14 # wr i t e your code here f o r add i t i o na l parameters .
15 # f e e l f r e e to add more arguments to the i n i t i a l i z e r .
16

17 de f s c o r e (s e l f , s t r f e a t u r e s) :
18 ’ ’ ’
19 : param s t r f e a t u r e s : S t r ing f e a t u r e s
20 20 f i r s t : words , next 20 : pos , next 12 : dependency l a b e l s .
21 DO NOT ADD ANY ARGUMENTS TO THIS FUNCTION.
22 : r e turn : l i s t o f s c o r e s
23 ’ ’ ’
24 # change t h i s part o f the code .
25 r e turn [0] ⇤ l en (s e l f . a c t i on s)
26

27 i f name ==’ ma in ’ :
28 m = DepModel ()
29 input p = os . path . abspath (sys . argv [1])
30 output p = os . path . abspath (sys . argv [2])
31 Decoder (m. score , m. a c t i on s) . parse (input p , output p)

If you just run the code as-is, it will generate default trees with very low
accuracies (because it only generates zero scores for every possible action).

>> python src/depModel.py trees/dev.conll outputs/dev.out

4 Homework Questions

This section provides details about the questions. Please put your code as
well as required outputs in the corresponding directories. A blind test set is
also provided for you (trees/test.conll). You do not have access to the correct
dependencies in the blind testing data but your grade will be a↵ected by the

6

output from that blind set.3

Part 1

Table 1 provides details about the parameters you need to use for this part.
Except the ones mentioned, every other setting should be the default setting of
the neural network library that you use.

Parameter Value
Trainer Adam algorithm
Training epochs 7
Transfer function RELU
Word embedding dimension 64
POS embedding dimension 32
Dependency embedding dimension 32
Minibatch size 1000
First hidden layer dimension (dh1) 200
Second hidden layer dimension (dh2) 200

Table 1: Parameter values for the experiments.

1. After training the model with 7 epochs on the training data, run the de-
coder on the file trees/dev.conll and put the output in trees/dev part1.conll.4

2. Run the following script to get the unlabeled and labeled dependency
accuracies. Report this number in your document.

>> python src/eval.py trees/dev.conll outputs/dev part1.conll

3. A blind test set is also provided for you (trees/test.conll). Run the de-
coder with your trained model on the blind test set and output it in
trees/test part1.conll.

Part 2

This part is roughly the same as part one but with the following di↵erences:
dh1 = 400 and dh2 = 400.

Similar to part 1, do the following steps:

1. After training the model with 7 epochs on the training data, run the de-
coder on the file trees/dev.conll and put the output in trees/dev part2.conll.

2. Run the following script to get the unlabeled and labeled dependency
accuracies. Report this number in your document.

3Because of the randomness in deep learning, we do not expect a particular performance
but your accuracies should not be far bellow the numbers that we produce.

4Remember to shu✏e you training data at each epoch.

7

>> python src/eval.py trees/dev.conll outputs/dev part2.conll

3. Run the decoder with your trained model on the blind test set and output
it in trees/test part2.conll.

4. Why do you think the accuracy changed?

Part 3

This part is open-ended so you are free to change the parameters. Try at least
one variation in of model and report the accuracy on the development data.
Use the best model to output trees/dev part3.conll and trees/test part3.conll
files.

The variations can come from the following (though you are not bounded to
these variations):

• Changing the activation function. For example, using the leaky RELU
instead of the original RELU activation function.

• Initializing word embeddings with pre-trained vectors for example from
https://nlp.stanford.edu/projects/glove/.

• Changing dimensions of the hidden or embedding layers.

• Dropout during training.

• Changing the mini-batch size.

• Changing the training algorithm (e.g. SGD, AdaGrad) or changing the
updater’s learning rate.

• Changing the number of training epochs.

In addition to reporting the accuracies, you should explain your observations
and reasons for the improvement that you achieve.

References

[1] Chen, D., and Manning, C. A fast and accurate dependency parser using
neural networks. In Proceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP) (2014), pp. 740–750.

[2] Nivre, J. Incrementality in deterministic dependency parsing. In Pro-

ceedings of the Workshop on Incremental Parsing: Bringing Engineering

and Cognition Together (2004), Association for Computational Linguistics,
pp. 50–57.

8

[3] Weiss, D., Alberti, C., Collins, M., and Petrov, S. Structured train-
ing for neural network transition-based parsing. In Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the

7th International Joint Conference on Natural Language Processing (Vol-

ume 1: Long Papers) (2015), Association for Computational Linguistics,
pp. 323–333.

9

