Flipped Classroom Questions on Feedforward Neural Networks

Michael Collins

Question 1: Consider a neural network

$$
\phi(x ; \theta)=g(W x+b)
$$

where $x \in \mathbb{R}^{d}, W \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$, and g is a transfer function defined as

$$
g(z)=\alpha \times z+c
$$

where $\alpha \in \mathbb{R}$ is a constant, and $c \in \mathbb{R}^{m}$ is a vector.
The following relationship will be useful in this question: given vectors v and x, and a matrix A,

$$
v \cdot(A x)=v^{\prime} \cdot x
$$

where $v^{\prime}=A^{\top} v$.
Proof:

$$
\underbrace{v}_{m \times 1} \cdot(\underbrace{A}_{m \times d} \underbrace{x}_{d \times 1})=\underbrace{v^{\top}}_{1 \times m} \underbrace{A}_{m \times d} \underbrace{x}_{d \times 1}=\left(v^{\top} A\right) x=\left(A^{\top} v\right)^{\top} x=v^{\prime} \cdot x
$$

where $v^{\prime}=\underbrace{A^{\top}}_{d \times m} \underbrace{v}_{m \times 1}$
Question 1a: Now say we define a model

$$
p(y \mid x ; \theta, v)=\frac{\exp \left\{v(y) \cdot \phi(x ; \theta)+\gamma_{y}\right\}}{\sum_{y^{\prime}} \exp \left\{v\left(y^{\prime}\right) \cdot \phi(x ; \theta)+\gamma_{y^{\prime}}\right\}}
$$

Show that for any parameter values $v(y)$ and γ_{y} for $y \in \mathcal{Y}$, there are parameter values $v^{\prime}(y)$ and γ_{y}^{\prime} such that for all x, y,

$$
p(y \mid x ; \theta, v)=\frac{\exp \left\{v^{\prime}(y) \cdot x+\gamma_{y}^{\prime}\right\}}{\sum_{y^{\prime}} \exp \left\{v^{\prime}\left(y^{\prime}\right) \cdot x+\gamma_{y^{\prime}}^{\prime}\right\}}
$$

Question 1b: Now assume the transfer function is

$$
g(z)=A z+c
$$

where $A \in \mathbb{R}^{m \times m}$ is a matrix, and $c \in \mathbb{R}^{m}$ is a vector. Show that under this model, for any parameter values $v(y)$ and γ_{y} for $y \in \mathcal{Y}$, there are parameter values $v^{\prime}(y)$ and γ_{y}^{\prime} such that for all x, y,

$$
p(y \mid x ; \theta, v)=\frac{\exp \left\{v^{\prime}(y) \cdot x+\gamma_{y}^{\prime}\right\}}{\sum_{y^{\prime}} \exp \left\{v^{\prime}\left(y^{\prime}\right) \cdot x+\gamma_{y^{\prime}}^{\prime}\right\}}
$$

Question 1c: Now assume we have an instance of the XOR problem, with examples

$$
\begin{array}{ll}
x=[0,0] & y=-1 \\
x=[0,1] & y=+1 \\
x=[1,0] & y=+1 \\
x=[1,1] & y=-1
\end{array}
$$

Show geometrically why a neural network with two neurons and transfer function

$$
g(z)=\alpha \times z+c
$$

or

$$
g(z)=A z+c
$$

fails to model this data.

Question 2: Consider the function LS : $\mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ that maps a vector $l \in \mathbb{R}^{m}$ to a vector $\mathrm{LS}(l) \in \mathbb{R}^{m}$ with the following components:

$$
\mathrm{LS}_{y}(l)=l_{y}-\log \sum_{y^{\prime}} \exp \left\{l_{y^{\prime}}\right\}
$$

We will refer to this as the "log softmax function".
Question 2a: What is the value for

$$
\frac{\partial \mathrm{LS}_{y}(l)}{\partial l_{y}}
$$

for each value of y ?
What is the value for

$$
\frac{\partial \mathbf{L} \mathbf{S}_{y}(l)}{\partial l_{y^{\prime}}}
$$

for any y, y^{\prime} such that $y \neq y^{\prime}$?
Question 2b: Now consider the following sequence of equations that defines the value of the output o given an input x^{i} and label y^{i} :

$$
\begin{aligned}
z \in \mathbb{R}^{m} & =W x^{i}+b \\
h \in \mathbb{R}^{m} & =g(z) \\
l \in \mathbb{R}^{K} & =V h+\gamma \\
q \in \mathbb{R}^{K} & =\operatorname{LS}(l) \\
o \in \mathbb{R} & =-q_{y_{i}}
\end{aligned}
$$

Here we define $K=|\mathcal{Y}|$ where \mathcal{Y} is the set of possible labels. Here V is a matrix of parameters $V \in \mathbb{R}^{K \times m}$, and $\gamma \in \mathbb{R}^{K}$.

Recall also that for a scalar $z=w \cdot x+b$, and a scalar $h=g(z)$ for some transfer function, we have:

$$
\frac{d h}{d w_{j}}=\frac{d g(z)}{d z} x_{j}
$$

We can write the derivative of o with respect to parameter $W_{j, k}$ using the chain rule:

$$
\begin{gathered}
\frac{\partial o}{\partial W_{j, k}}=\sum_{y} \frac{\partial o}{q_{y}} \frac{\partial q_{y}}{\partial W_{j, k}} \\
\frac{\partial q_{y}}{\partial W_{j, k}}=\sum_{y^{\prime}} \frac{\partial q_{y}}{\partial l_{y^{\prime}}} \frac{\partial l_{y^{\prime}}}{\partial W_{j, k}}
\end{gathered}
$$

Complete the following expressions:

$$
\begin{aligned}
\frac{\partial l_{y^{\prime}}}{\partial W_{j, k}} & =\sum_{k=1}^{m} \\
\frac{\partial o}{\partial q_{y}} & = \\
\frac{\partial q_{y}}{\partial l_{y^{\prime}}} & = \\
\frac{\partial l_{y^{\prime}}}{\partial h_{k}} & =
\end{aligned}
$$

One hint: note that with $l=V h+\gamma$, we have

$$
l_{y}=\sum_{k=1}^{m} V_{y, k} h_{k}+\gamma_{y}
$$

Question 3: Assume we have a model with input $f(x) \in \mathbb{R}^{d}$, and parameters $v(y) \in \mathbb{R}^{d}$ for each label y. The set of possible labels is $\mathcal{Y}=\{1,2, \ldots K\}$. Give definitions of a feature vector $f(x, y)$ such that for all x, y,

$$
v(y) \cdot f(x)=w \cdot f(x, y)
$$

where v is the concatenation of parameter vectors

$$
w=[v(1) ; v(2) ; \ldots ; v(K)]
$$

Now assume that in addition to the $v(y)$ parameters, we have a parameter $\gamma_{y} \in$ \mathbb{R} for each label y. How would you define $f(x, y)$ and w so that for all x, y

$$
v(y) \cdot f(x)+\gamma_{y}=f(x, y) \cdot w
$$

Question 4: Assume we have an instance of the XOR problem, with examples

$$
\begin{array}{ll}
x=[0,0] & y=-1 \\
x=[0,1] & y=+1 \\
x=[1,0] & y=+1 \\
x=[1,1] & y=-1
\end{array}
$$

Assume that we have a neural network with three neurons, which take values

$$
h_{1}=x_{1}, \quad h_{2}=x_{2}, \quad h_{3}=x_{1} \times x_{2}, \quad h_{4}=x_{1}^{2}, \quad h_{5}=x_{2}^{2}
$$

where $\left[x_{1}, x_{2}\right]$ is the input vector. Is it possible to model the data using these definitions of the neurons?

