
Flipped Classroom Questions on Conditional Random Fields

Michael Collins

1 Notation

Throughout this note I’ll use underline to denote vectors. For example, w ∈ Rd will be a vector
with components w1, w2, . . . wd. We use exp(x) for the exponential function, i.e., exp(x) = ex.

2 CRFs

We now turn to conditional random fields (CRFs).

One brief note on notation: for convenience, we’ll use x to refer to an input sequence x1 . . . xm,
and s to refer to a sequence of states s1 . . . sm. The set of all possible states is again S; the set of all
possible state sequences is Sm. In conditional random fields we’ll again build a model of

p(s1 . . . sm|x1 . . . xm) = p(s|x)

A first key idea in CRFs will be to define a feature vector

Φ(x, s) ∈ Rd

that maps an entire input sequence x paired with an entire state sequence s to some d-dimensional
feature vector. We’ll soon give a concrete definition for Φ, but for now just assume that some
definition exists. We will often refer to Φ as being a “global” feature vector (it is global in the sense
that it takes the entire state sequence into account).

We then build a giant log-linear model,

p(s|x;w) =
exp (w · Φ(x, s))∑

s′∈Sm exp (w · Φ(x, s′))

This is “just” another log-linear model, but it is is “giant” in the sense that: 1) the space of possible
values for s, i.e., Sm, is huge. 2) The normalization constant (denominator in the above expression)

1

involves a sum over the set Sm. At first glance, these issues might seem to cause severe compu-
tational problems, but we’ll soon see that under appropriate assumptions we can train and decode
efficiently with this type of model.

The next question is how to define Φ(x, s)? Our answer will be

Φ(x, s) =
m∑
j=1

φ(x, j, sj−1, sj)

Here φ(x, j, sj−1, sj) is a feature vector where:

• x = x1 . . . xm is the entire sentence being tagged

• j is the position to be tagged (can take any value from 1 to m)

• sj−1 is the previous state value (can take any value in S)

• sj is the new state value (can take any value in S)

See the lecture slides on log-linear models (from Lecture 1) to see examples of features used in
applications such as part-of-speech tagging.

Or put another way, we’re assuming that for k = 1 . . . d, the k’th global feature is

Φk(x, s) =
m∑
j=1

φk(x, j, sj−1, sj)

Thus Φk is calculated by summing the “local” feature vector φk over them different state transitions
in s1 . . . sm.

We now turn to two critical practical issues in CRFs: first, decoding, and second, parameter esti-
mation.

Decoding with CRFs The decoding problem in CRFs is as follows: for a given input sequence
x = x1, x2, . . . xm, we would like to find the most likely underlying state sequence under the model,
that is,

arg max
s∈Sm

p(s|x;w)

We simplify this expression as follows:

arg max
s∈Sm

p(s|x;w) = arg max
s∈Sm

exp (w · Φ(x, s))∑
s′∈Sm exp (w · Φ(x, s′))

= arg max
s∈Sm

exp (w · Φ(x, s))

2

= arg max
s∈Sm

w · Φ(x, s)

= arg max
s∈Sm

w ·
m∑
j=1

φ(x, j, sj−1, sj)

= arg max
s∈Sm

m∑
j=1

w · φ(x, j, sj−1, sj)

So we have shown that finding the most likely sequence under the model is equivalent to finding the
sequence that maximizes

arg max
s∈Sm

m∑
j=1

w · φ(x, j, sj−1, sj)

Question 1: describe a dynamic programming problem that finds the arg max in the above equation.

Parameter Estimation in CRFs. For parameter estimation, we assume we have a set of n la-
beled examples, {(xi, si)}ni=1. Each xi is an input sequence xi1 . . . x

i
m, each si is a state sequence

si1 . . . s
i
m. We then proceed in exactly the same way as for regular log-linear models. The regular-

ized log-likelihood function is

L(w) =
n∑

i=1

log p(si|xi;w)− λ

2
||w||2

Our parameter estimates are then

w∗ = arg max
w∈Rd

n∑
i=1

log p(si|xi;w)− λ

2
||w||2

We’ll again use gradient-based optimization methods to find w∗. As before, the partial derivatives
are

∂

∂wk
L(w) =

∑
i

Φk(xi, si)−
∑
i

∑
s∈Sm

p(s|xi;w)Φk(xi, s)− λwk

The first term is easily computed, because

∑
i

Φk(xi, si) =
∑
i

m∑
j=1

φk(xi, j, sij−1, s
i
j)

Hence all we have to do is to sum over all training examples i = 1 . . . n, and for each example sum
over all positions j = 1 . . .m.

The second term is more difficult to deal with, because it involves a sum over Sm, a very large set.

3

Question 2: Assume that for any i, j, for any a ∈ S, b ∈ S, we can efficiently compute

qij(a, b) =
∑

s∈Sm:sj−1=a,sj=b

p(s|xi;w)

The quantity qij(a, b) has a fairly intuitive interpretation: it is the probabilty of the i’th training
example xi having state a at position j−1 and state b at position j, under the distribution p(s|x;w).

Show that given an algorithm that computes all qij(a, b) terms efficiently, it is possible to efficiently
(in polynomial time) compute ∑

i

∑
s∈Sm

p(s|xi;w)Φk(xi, s)

(Note: A critical result is that for a given i, all qij(a, b) terms can be calculated together, in O(mk2)
time. The algorithm that achieves this is the forward-backward algorithm. This is another dynamic
programming algorithm, and is closely related to the Viterbi algorithm.)

4

