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Question 1: Assume the Brown clustering set-up. We have a corpus, and define

f(u, v)

for any word pair (u, v) to be the number of times the bigram (u, v) is seen in the data.

In addition we define
f1(u) =

∑
v

f(u, v) f2(v) =
∑
u

f(u, v)

Next, assume we have some clustering function C that maps any word in vocabulary u to a cluster
C(u) ∈ {1 . . .K}. Here K is the number of clusters.

Define the following counts:

g(c, c′) =
∑

u:C(u)=c

∑
v:C(v)=c′

f(u, v)

I.e., g(c, c′) is the number of times we see the cluster bigram (c, c′) in the data, under the function
C. In addition define

g1(c) =
∑
c′

g(c, c′) g2(c
′) =

∑
c

g(c, c′)

Under these definitions, given emission parameters e(·|·) and transition parameters q(·|·), the log-
likelihood of the training data is

Q(C, e, q) =
∑
u,v

f(u, v)[log e(v|C(v)) + log q(C(v)|C(u))]

The emission and transition parameters that maximize this function are

e(v|C(v)) =
f2(v)

g2(v)
q(C(v)|C(u)) =

g(C(u), C(v))

g1(C(u))

Question: If we define the objective function for the clustering function C as

Q(C) = max
e,q

Q(C, e, q)

then show that

Q(C) =
∑
c,c′

g(c, c′) log
g(c, c′)

g1(c)g2(c′)
+G

where G is a constant.
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Question 2 (Follows Goldberg and Levy, 2014)

Assume we have some distribution p(u, v) over word bigrams, and that p1(u) and p2(v) are the two
marginal distributions:

p1(u) =
∑
v

p(u, v) p2(v) =
∑
u

p(u, v)

Assume in addition that for each word w in the vocabulary, we have vectors θ′w, θw in Rd. We use
Θ′,Θ to denote the full matrices of embedding parameters. The objective function used to train
Θ′,Θ is then

L(Θ′,Θ) =
∑
u,v

[
p(u, v) log

exp{θ′u · θv}
1 + exp{θ′u · θv}

+Kp1(u)p2(v) log
1

1 + exp{θ′u · θv}

]

Now assume that there is some setting for Θ such that for all u, v,

θ′u · θv = log
p(u, v)

p1(u)p2(v)
− logK

Assume in addition that for all u, v,

p(u, v) +Kp1(u)p2(v) > 0

Question: Show that under the two assumptions above, if we define

Θ′∗,Θ∗ = arg maxL(Θ′,Θ)

then for all u, v,

θ′∗u · θ∗v = log
p(u, v)

p1(u)p2(v)
− logK

Hint: For any value of q ∈ [0, 1], if we define

p∗ = arg max
p∈[0,1]

(q log p+ (1− q) log(1− p))

then p∗ = q
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