Tagging Problems, and Hidden Markov Models

Michael Collins, Columbia University
Overview

- The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
Part-of-Speech Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:
Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun
V = Verb
P = Preposition
Adv = Adverb
Adj = Adjective
...
INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on [Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter results.
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

= No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
...
Our Goal

Training set:
1 Pierre/VNP Vinken/VNP , 61/CD years/NNS old/JJ , will/MD join/VB the/D board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD .
2 Mr./NNP Vinken/VNP is/VBZ chairman/NN of/IN Elsevier/VNP N.V./NNP , the/D Dutch/VBG group/NN ./.
3 Rudolph/VNP Agnew/VNP , 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/VNP Gold/VNP Fields/VNP PLC/VNP , was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

...38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/VNP Rico/VNP , who/WP were/VBD helping/VBG Hurricane/VNP Hugo/VNP victims/NNS , and/CC sending/VBG them/PRP to/TO San/VNP Francisco/VNP instead/RB ./.

- From the training set, induce a function/algorithm that maps new sentences to their tag sequences.
Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ./.

▶ “Local”: e.g., *can* is more likely to be a modal verb MD rather than a noun NN
▶ “Contextual”: e.g., a noun is much more likely than a verb to follow a determiner
▶ Sometimes these preferences are in conflict:

 The trash can is in the garage
Overview

- The Tagging Problem

- Generative models, and the noisy-channel model, for supervised learning

- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
Supervised Learning Problems

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Each $x^{(i)}$ is an input, each $y^{(i)}$ is a label.

- Task is to learn a function f mapping inputs x to labels $f(x)$.
Supervised Learning Problems

- We have training examples \(x^{(i)}, y^{(i)} \) for \(i = 1 \ldots m \). Each \(x^{(i)} \) is an input, each \(y^{(i)} \) is a label.

- Task is to learn a function \(f \) mapping inputs \(x \) to labels \(f(x) \)

- Conditional models:
 - Learn a distribution \(p(y|x) \) from training examples
 - For any test input \(x \), define \(f(x) = \arg \max_y p(y|x) \)
Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.

- Generative models:
 - Learn a distribution $p(x, y)$ from training examples
 - Often we have $p(x, y) = p(y)p(x|y)$
 - Note: we then have $p(y|x) = p(y)p(x|y)p(x)$
 where $p(x) = \sum_y p(y)p(x|y)$
Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.

- Generative models:
 - Learn a distribution $p(x, y)$ from training examples
 - Often we have $p(x, y) = p(y)p(x|y)$
Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.

- Generative models:
 - Learn a distribution $p(x, y)$ from training examples
 - Often we have $p(x, y) = p(y)p(x|y)$

- Note: we then have

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$

where $p(x) = \sum_y p(y)p(x|y)$
Decoding with Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.
Decoding with Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.
- Generative models:
 - Learn a distribution $p(x, y)$ from training examples
 - Often we have $p(x, y) = p(y)p(x|y)$
Decoding with Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.
- Generative models:
 - Learn a distribution $p(x, y)$ from training examples
 - Often we have $p(x, y) = p(y)p(x|y)$

- Output from the model:

$$f(x) = \arg \max_y p(y|x)$$

$$= \arg \max_y \frac{p(y)p(x|y)}{p(x)}$$

$$= \arg \max_y p(y)p(x|y)$$
Overview

- The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
Hidden Markov Models

- We have an input sentence $x = x_1, x_2, \ldots, x_n$ (x_i is the i'th word in the sentence)

- We have a tag sequence $y = y_1, y_2, \ldots, y_n$ (y_i is the i'th tag in the sentence)

- We'll use an HMM to define
 $$ p(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n) $$
 for any sentence $x_1 \ldots x_n$ and tag sequence $y_1 \ldots y_n$ of the same length.

- Then the most likely tag sequence for x is
 $$ \arg\max_{y_1 \ldots y_n} p(x_1 \ldots x_n, y_1, y_2, \ldots, y_n) $$
Trigram Hidden Markov Models (Trigram HMMs)

For any sentence $x_1 \ldots x_n$ where $x_i \in \mathcal{V}$ for $i = 1 \ldots n$, and any tag sequence $y_1 \ldots y_{n+1}$ where $y_i \in \mathcal{S}$ for $i = 1 \ldots n$, and $y_{n+1} = \text{STOP}$, the joint probability of the sentence and tag sequence is

$$p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i | y_{i-2}, y_{i-1}) \prod_{i=1}^{n} e(x_i | y_i)$$

where we have assumed that $x_0 = x_{-1} = \ast$.

Parameters of the model:

- $q(s|u,v)$ for any $s \in \mathcal{S} \cup \{\text{STOP}\}$, $u,v \in \mathcal{S} \cup \{\ast\}$
- $e(x|s)$ for any $s \in \mathcal{S}$, $x \in \mathcal{V}$
An Example

If we have $n = 3$, $x_1 \ldots x_3$ equal to the sentence *the dog laughs*, and $y_1 \ldots y_4$ equal to the tag sequence $D \ N \ V \ STOP$, then

$$
p(x_1 \ldots x_n, y_1 \ldots y_{n+1})
= q(D|*, *) \times q(N|*, D) \times q(V|D, N) \times q(STOP|N, V)
\times e(\text{the}|D) \times e(\text{dog}|N) \times e(\text{laughs}|V)
$$

- STOP is a special tag that terminates the sequence
- We take $y_0 = y_{-1} = *$, where * is a special “padding” symbol
Why the Name?

\[
p(x_1 \ldots x_n, y_1 \ldots y_n) = q(\text{STOP} | y_{n-1}, y_n) \prod_{j=1}^{n} q(y_j | y_{j-2}, y_{j-1}) \times \prod_{j=1}^{n} e(x_j | y_j)
\]

Markov Chain

\(x_j\)'s are observed
Overview

- The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
Smoothed Estimation

\[q(Vt \mid DT, JJ) = \lambda_1 \times \frac{\text{Count}(Dt, JJ, Vt)}{\text{Count}(Dt, JJ)} + \lambda_2 \times \frac{\text{Count}(JJ, Vt)}{\text{Count}(JJ)} + \lambda_3 \times \frac{\text{Count}(Vt)}{\text{Count}()} \]

\[\lambda_1 + \lambda_2 + \lambda_3 = 1, \quad \text{and for all } i, \lambda_i \geq 0 \]

\[e(\text{base} \mid Vt) = \frac{\text{Count}(Vt, base)}{\text{Count}(Vt)} \]
Dealing with Low-Frequency Words: An Example

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.
A common method is as follows:

- **Step 1:** Split vocabulary into two sets
 - Frequent words = words occurring \geq 5 times in training
 - Low frequency words = all other words

- **Step 2:** Map low frequency words into a small, finite set, depending on prefixes, suffixes etc.
Dealing with Low-Frequency Words: An Example

[Bikel et. al 1999] *(named-entity recognition)*

<table>
<thead>
<tr>
<th>Word class</th>
<th>Example</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>twoDigitNum</td>
<td>90</td>
<td>Two digit year</td>
</tr>
<tr>
<td>fourDigitNum</td>
<td>1990</td>
<td>Four digit year</td>
</tr>
<tr>
<td>containsDigitAndAlpha</td>
<td>A8956-67</td>
<td>Product code</td>
</tr>
<tr>
<td>containsDigitAndDash</td>
<td>09-96</td>
<td>Date</td>
</tr>
<tr>
<td>containsDigitAndDash</td>
<td>11/9/89</td>
<td>Date</td>
</tr>
<tr>
<td>containsDigitAndSlash</td>
<td>23,000.00</td>
<td>Monetary amount</td>
</tr>
<tr>
<td>containsDigitAndComma</td>
<td>1.00</td>
<td>Monetary amount, percentage</td>
</tr>
<tr>
<td>othernum</td>
<td>456789</td>
<td>Other number</td>
</tr>
<tr>
<td>allCaps</td>
<td>BBN</td>
<td>Organization</td>
</tr>
<tr>
<td>capPeriod</td>
<td>M.</td>
<td>Person name initial</td>
</tr>
<tr>
<td>firstWord</td>
<td>first word of sentence</td>
<td>no useful capitalization information</td>
</tr>
<tr>
<td>initCap</td>
<td>Sally</td>
<td>Capitalized word</td>
</tr>
<tr>
<td>lowercase</td>
<td>can</td>
<td>Uncapitalized word</td>
</tr>
<tr>
<td>other</td>
<td>,</td>
<td>Punctuation marks, all other words</td>
</tr>
</tbody>
</table>
Dealing with Low-Frequency Words: An Example

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA
CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA
results/NA ./NA
Overview

- The Tagging Problem

- Generative models, and the noisy-channel model, for supervised learning

- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
The Viterbi Algorithm

Problem: for an input $x_1 \ldots x_n$, find

$$\arg \max_{y_1 \ldots y_{n+1}} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

where the $\arg \max$ is taken over all sequences $y_1 \ldots y_{n+1}$ such that $y_i \in S$ for $i = 1 \ldots n$, and $y_{n+1} = \text{STOP}$.

We assume that p again takes the form

$$p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i|y_{i-2}, y_{i-1}) \prod_{i=1}^{n} e(x_i|y_i)$$

Recall that we have assumed in this definition that $y_0 = y_{-1} = ^*$, and $y_{n+1} = \text{STOP}$.
Problem: for an input $x_1 \ldots x_n$, find

$$\arg \max_{y_1 \ldots y_{n+1}} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

where the $\arg \max$ is taken over all sequences $y_1 \ldots y_{n+1}$ such that $y_i \in S$ for $i = 1 \ldots n$, and $y_{n+1} = \text{STOP}$.
The Viterbi Algorithm

- Define n to be the length of the sentence
- Define S_k for $k = -1 \ldots n$ to be the set of possible tags at position k:

 \[
 S_{-1} = S_0 = \{*\}
 \]
 \[
 S_k = S \quad \text{for} \quad k \in \{1 \ldots n\}
 \]
- Define

 \[
 r(y_{-1}, y_0, y_1, \ldots, y_k) = \prod_{i=1}^{k} q(y_i | y_{i-2}, y_{i-1}) \prod_{i=1}^{k} e(x_i | y_i)
 \]
- Define a dynamic programming table

 \[
 \pi(k, u, v) = \text{maximum probability of a tag sequence ending in tags } u, v \text{ at position } k
 \]

 that is,

 \[
 \pi(k, u, v) = \max_{y_{-1}, y_0, y_1, \ldots, y_k} r(y_{-1}, y_0, y_1 \ldots y_k) \quad y_{k-1} = u, y_k = v
 \]
An Example

$$\pi(k, u, v) = \text{maximum probability of a tag sequence ending in tags } u, v \text{ at position } k$$

The man saw the dog with the telescope
A Recursive Definition

Base case:
\[\pi(0, *, *) = 1 \]

Recursive definition:
For any \(k \in \{1 \ldots n\} \), for any \(u \in S_{k-1} \) and \(v \in S_k \):
\[
\pi(k, u, v) = \max_{w \in S_{k-2}} (\pi(k - 1, w, u) \times q(v|w, u) \times e(x_k|v))
\]
Justification for the Recursive Definition

For any $k \in \{1 \ldots n\}$, for any $u \in S_{k-1}$ and $v \in S_k$:

$$\pi(k, u, v) = \max_{w \in S_{k-2}} (\pi(k - 1, w, u) \times q(v|w, u) \times e(x_k|v))$$

The man saw the dog with the telescope
The Viterbi Algorithm

Input: a sentence $x_1 \ldots x_n$, parameters $q(s|u,v)$ and $e(x|s)$.

Initialization: Set $\pi(0, *, *) = 1$

Definition: $S_{-1} = S_0 = \{*\}$, $S_k = S$ for $k \in \{1 \ldots n\}$

Algorithm:

- For $k = 1 \ldots n$,
 - For $u \in S_{k-1}$, $v \in S_k$,

 $$\pi(k, u, v) = \max_{w \in S_{k-2}} \left(\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v) \right)$$

- **Return** $\max_{u \in S_{n-1}, v \in S_n} (\pi(n, u, v) \times q(\text{STOP}|u, v))$
The Viterbi Algorithm with Backpointers

Input: a sentence $x_1 \ldots x_n$, parameters $q(s|u,v)$ and $e(x|s)$.

Initialization: Set $\pi(0, *, *) = 1$

Definition: $S_{-1} = S_0 = \{ * \}$, $S_k = S$ for $k \in \{1 \ldots n\}$

Algorithm:

- For $k = 1 \ldots n$,
 - For $u \in S_{k-1}$, $v \in S_k$,
 $$\pi(k, u, v) = \max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))$$
 $$bp(k, u, v) = \arg \max_{w \in S_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))$$
 - Set $(y_{n-1}, y_n) = \arg \max_{(u,v)} (\pi(n, u, v) \times q(\text{STOP}|u, v))$
 - For $k = (n - 2) \ldots 1$, $y_k = bp(k+2, y_{k+1}, y_{k+2})$
- Return the tag sequence $y_1 \ldots y_n$
The Viterbi Algorithm: Running Time

- \(O(n|S|^3) \) time to calculate \(q(s|u,v) \times e(x_k|s) \) for all \(k, s, u, v \).

- \(n|S|^2 \) entries in \(\pi \) to be filled in.

- \(O(|S|) \) time to fill in one entry

\(\Rightarrow O(n|S|^3) \) time in total
Pros and Cons

- Hidden markov model taggers are very simple to train (just need to compile counts from the training corpus)

- Perform relatively well (over 90% performance on named entity recognition)

- Main difficulty is modeling

\[e(word | tag) \]

can be very difficult if “words” are complex