Flipped Classroom Questions on Computational Graphs, and Backpropagation
Michael Collins

Question 1: Consider the following system of equations, which define a neural network with two hidden layers:

Definitions: The set of possible labels is \mathcal{Y}. We define $K = |\mathcal{Y}|$. $g^1 : \mathbb{R}^m \rightarrow \mathbb{R}^m$ and $g^2 : \mathbb{R}^m \rightarrow \mathbb{R}^m$ are transfer functions. We define $LS = \text{LOG-SOFTMAX}$.

Inputs: $x^i \in \mathbb{R}^d$, $y^i \in \mathcal{Y}$, $W^1 \in \mathbb{R}^{m \times d}$, $b^1 \in \mathbb{R}^m$, $W^2 \in \mathbb{R}^{m \times m}$, $b^2 \in \mathbb{R}^m$, $V \in \mathbb{R}^{K \times m}$, $\gamma \in \mathbb{R}^K$.

Equations:

\[
\begin{align*}
 z^1 &\in \mathbb{R}^m = W^1 x^i + b^1 \\
 h^1 &\in \mathbb{R}^m = g^1(z^1) \\
 z^2 &\in \mathbb{R}^m = W^2 h^1 + b^2 \\
 h^2 &\in \mathbb{R}^m = g^2(z^2) \\
 l &\in \mathbb{R}^K = V h^2 + \gamma \\
 q &\in \mathbb{R}^K = \text{LS}(l) \\
 o &\in \mathbb{R} = -q_{y_i}
\end{align*}
\]

Question 1a: Draw the computational graph for this system of equations. Which variables are at the leaves?

Question 1b: Write down expressions (using products of Jacobians) for the following quantities:

\[
\begin{align*}
 \frac{\partial o}{\partial V} | f^o \\
 \frac{\partial o}{\partial W^1} | f^o \\
 \frac{\partial o}{\partial W^2} | f^o
\end{align*}
\]
Question 2: Consider a computational graph with the following definitions:

- Number of leaves \(l = 2 \), number of nodes \(n = 5 \)
- A variable \(u^i \in \mathbb{R} \) for \(i = 1 \ldots n \). Hence each variable in the graph has dimension \(d_i = 1 \)
- Set of edges \(E = \{(1, 3), (2, 3), (1, 4), (2, 4), (3, 5), (4, 5)\} \)
- Local functions:
 \[
 u^3 = f^3(u^1, u^2) = u^1 \times u^2 \\
 u^4 = f^4(u^1, u^2) = u^1 + u^2 \\
 u^5 = f^5(u^3, u^4) = 2 \times u^3 \times u^4
 \]

Question 2a: Draw the computational graph for this example. Assume that the inputs are

\[
u^1 = 3, \quad u^2 = 4
\]

Show how values are computed in the forward pass of the algorithm, giving an output value for \(u^5 \).

Question 2b: The output value \(u^n \) is a function \(\bar{f}^n \) of the values for the leaf variables \(u^1 \) and \(u^2 \).

\[
u^n = \bar{f}^n(u^1, u^2)
\]

Write down the expression for \(\bar{f}^n \).

Question 2b: Recall that for each edge \((j, i)\) we define the Jacobian

\[
J^{j \rightarrow i}(A^i) = \frac{\partial u^i}{\partial u^j} \bigg|^{f^i}
\]

where \(A^i = \langle u^j : (j, i) \in E \rangle \). For example we have

\[
J^{1 \rightarrow 3}(A^3) = \frac{\partial}{\partial u^1} (u^1 \times u^2) = u^2
\]

Write down expressions for Jacobians associated with the other edges in graph. Calculate the values for these Jacobians under inputs \(u^1 = 3 \) and \(u^2 = 4 \).

Question 2c: Recall that the general form for the backward pass is:

\[
p^n = 1
\]
• For $j = (n-1) \ldots 1$:

$$p_j = \sum_{i : (j,i) \in E} p_i^j \theta_{j \rightarrow i} (A_i^j)$$

Given that the inputs are $u^1 = 3$ and $u^2 = 4$, calculate the values $p^5, p^4, \ldots p^1$ calculated in the backward pass.

Question 3: Consider the following system of equations, which define a neural network with a single hidden layer:

Definitions: The set of possible labels is \mathcal{Y}. We define $K = |\mathcal{Y}|$. $g : \mathbb{R}^m \rightarrow \mathbb{R}^m$ is a transfer function. We define $LS = \text{LOG-SOFTMAX}$.

Inputs: $x^i \in \mathbb{R}^d, y^i \in \mathcal{Y}, W \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m, V \in \mathbb{R}^{K \times m}, \gamma \in \mathbb{R}^K$.

Equations:

$$z \in \mathbb{R}^m = W x^i + b$$
$$h \in \mathbb{R}^m = g(z)$$
$$l \in \mathbb{R}^K = V h + \gamma$$
$$q \in \mathbb{R}^K = \text{LS}(l)$$
$$o \in \mathbb{R} = -q y^i$$

Question 3a: Now say we have a pair of training examples $((x^{i,1}, y^{i,1}), (x^{i,2}, y^{i,2}))$, and we would like to take gradients with respect to the loss function

$$L(\theta, v) = -\log p(y^{i,1} | x^{i,1}; \theta, v) - \log p(y^{i,2} | x^{i,2}; \theta, v)$$

Write down a system of equations for this loss function. Show the computational graph. Your graph should have intermediate variables $z^1, z^2, h^1, h^2, l^1, l^2, q^1, q^2$, and an output variable o.

Question 3b: If o is the output variable for your answer to Question 3a, write down an expression for

$$\frac{\partial o}{\partial V} \bigg|_{\theta}$$

Hint: recall that to calculate a partial derivative of the output with respect to a leaf, you can sum over directed paths from the leaf to the output, and take the product of Jacobians along each path.
Question 3c: Again assume that we have inputs \((x^{i,1}, y^{i,1})\) and \((x^{i,2}, y^{i,2})\) and we would like the loss function to be

\[
L(\theta, v) = -\log p(y^{i,1}|x^{i,1}; \theta, v) - \log p(y^{i,2}|x^{i,2}; \theta, v)
\]

Assume that we would like to implement this loss through the following system of equations:

\[
\begin{align*}
 z &\in \mathbb{R}^{m \times 2} = f^z(W, x^{i,1}, x^{i,2}, b) \\
 h &\in \mathbb{R}^{m \times 2} = f^g(z) \\
 l &\in \mathbb{R}^{K \times 2} = f^l(V, h, \gamma) \\
 q &\in \mathbb{R}^{K \times 2} = f^q(l) \\
 o &\in \mathbb{R} = f^o(q, y^{i,1}, y^{i,2})
\end{align*}
\]

How would you define the functions \(f^z, f^g, f^l, f^q, \) and \(f^o\) to implement the loss function?

You may find the following notation useful. Given matrices \(A \in \mathbb{R}^{m \times d_1}\) and \(B \in \mathbb{R}^{m \times d_2}\), we write \([A; B]\) to refer to the matrix of dimension \(m \times (d_1 + d_2)\) formed by concatenating the columns of \(B\) to the columns of \(A\).