Flipped Classroom Questions on Feedforward Neural Networks
Michael Collins

Question 1: Consider a neural network
\[\phi(x; \theta) = g(Wx + b) \]
where \(x \in \mathbb{R}^d, W \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m, \) and \(g \) is a transfer function defined as
\[g(z) = \alpha \times z + c \]
where \(\alpha \in \mathbb{R} \) is a constant, and \(c \in \mathbb{R}^m \) is a vector.

The following relationship will be useful in this question: given vectors \(v \) and \(x \), and a matrix \(A \),
\[v \cdot (Ax) = v' \cdot x \]
where \(v' = A^\top v. \)

Proof:
\[
\begin{align*}
\begin{pmatrix} v & \cdot \\
\end{pmatrix}_{m \times 1} \begin{pmatrix} A & x \\
\end{pmatrix}_{m \times d, d \times 1} &= \begin{pmatrix} A & x \\
\end{pmatrix}_{1 \times m, m \times d, d \times 1} (v^\top A)x = (A^\top v)^\top x = v' \cdot x
\end{align*}
\]

Question 1a: Now say we define a model
\[p(y|x; \theta, v) = \frac{\exp\{v(y) \cdot \phi(x; \theta) + \gamma_y\}}{\sum_{y'} \exp\{v'(y') \cdot \phi(x; \theta) + \gamma_{y'}\}} \]
Show that for any parameter values \(v(y) \) and \(\gamma_y \) for \(y \in \mathcal{Y} \), there are parameter values \(v'(y) \) and \(\gamma'_{y} \) such that for all \(x, y \),
\[p(y|x; \theta, v) = \frac{\exp\{v'(y) \cdot x + \gamma'_{y}\}}{\sum_{y'} \exp\{v'(y') \cdot x + \gamma'_{y'}\}} \]

Question 1b: Now assume the transfer function is
\[g(z) = Az + c \]
where \(A \in \mathbb{R}^{m \times m} \) is a matrix, and \(c \in \mathbb{R}^m \) is a vector. Show that under this model, for any parameter values \(v(y) \) and \(\gamma_y \) for \(y \in \mathcal{Y} \), there are parameter values \(v'(y) \) and \(\gamma'_{y} \) such that for all \(x, y \),
\[p(y|x; \theta, v) = \frac{\exp\{v'(y) \cdot x + \gamma'_{y}\}}{\sum_{y'} \exp\{v'(y') \cdot x + \gamma'_{y'}\}} \]
Question 1c: Now assume we have an instance of the XOR problem, with examples

\[x = [0, 0] \quad y = -1 \]
\[x = [0, 1] \quad y = +1 \]
\[x = [1, 0] \quad y = +1 \]
\[x = [1, 1] \quad y = -1 \]

Show geometrically why a neural network with two neurons and transfer function

\[g(z) = \alpha \times z + c \]

or

\[g(z) = Az + c \]

fails to model this data.

Question 2: Consider the function \(LS : \mathbb{R}^m \to \mathbb{R}^m \) that maps a vector \(l \in \mathbb{R}^m \) to a vector \(LS(l) \in \mathbb{R}^m \) with the following components:

\[LS_y(l) = l_y - \log \sum_{y'} \exp \{ l_{y'} \} \]

We will refer to this as the “log softmax function”.

Question 2a: What is the value for

\[\frac{\partial LS_y(l)}{\partial l_y} \]

for each value of \(y \)?

What is the value for

\[\frac{\partial LS_y(l)}{\partial l_{y'} } \]
for any \(y, y' \) such that \(y \neq y' \)?

Question 2b: Now consider the following sequence of equations that defines the value of the output \(o \) given an input \(x^i \) and label \(y^i \):

\[
\begin{align*}
z &\in \mathbb{R}^m = W x^i + b \\
h &\in \mathbb{R}^m = g(z) \\
l &\in \mathbb{R}^K = V h + \gamma \\
q &\in \mathbb{R}^K = L S(l) \\
o &\in \mathbb{R} = -q_{y_i}
\end{align*}
\]

Here we define \(K = |\mathcal{Y}| \) where \(\mathcal{Y} \) is the set of possible labels. Here \(V \) is a matrix of parameters \(V \in \mathbb{R}^{K \times m} \), and \(\gamma \in \mathbb{R}^K \).

Recall also that for a scalar \(z = w \cdot x + b \), and a scalar \(h = g(z) \) for some transfer function, we have:

\[
\frac{dh}{dw_j} = \frac{dg(z)}{dz} x_j
\]

We can write the derivative of \(o \) with respect to parameter \(W_{j,k} \) using the chain rule:

\[
\frac{\partial o}{\partial W_{j,k}} = \sum_y \frac{\partial o}{\partial q_y} \frac{\partial q_y}{\partial W_{j,k}}
\]

\[
\frac{\partial q_y}{\partial W_{j,k}} = \sum_{y'} \frac{\partial q_y}{\partial l_{y'}} \frac{\partial l_{y'}}{\partial W_{j,k}}
\]

Complete the following expressions:

\[
\frac{\partial l_{y'}}{\partial W_{j,k}} = \sum_{k=1}^{m} \frac{\partial o}{\partial q_y} \frac{\partial q_y}{\partial W_{j,k}}
\]

One hint: note that with \(l = V h + \gamma \), we have

\[
l_y = \sum_{k=1}^{m} V_{y,k} h_k + \gamma_y
\]
Question 3: Assume we have a model with input $f(x) \in \mathbb{R}^d$, and parameters $v(y) \in \mathbb{R}^d$ for each label y. The set of possible labels is $\mathcal{Y} = \{1, 2, \ldots, K\}$. Give definitions of a feature vector $f(x, y)$ such that for all x, y,

$$v(y) \cdot f(x) = w \cdot f(x, y)$$

where v is the concatenation of parameter vectors

$$w = [v(1); v(2); \ldots; v(K)]$$

Now assume that in addition to the $v(y)$ parameters, we have a parameter $\gamma_y \in \mathbb{R}$ for each label y. How would you define $f(x, y)$ and w so that for all x, y

$$v(y) \cdot f(x) + \gamma_y = f(x, y) \cdot w$$

Question 4: Assume we have an instance of the XOR problem, with examples

$$x = [0, 0] \quad y = -1$$
$$x = [0, 1] \quad y = +1$$
$$x = [1, 0] \quad y = +1$$
$$x = [1, 1] \quad y = -1$$

Assume that we have a neural network with three neurons, which take values

$$h_1 = x_1, \quad h_2 = x_2, \quad h_3 = x_1 \times x_2, \quad h_4 = x_1^2, \quad h_5 = x_2^2$$

where $[x_1, x_2]$ is the input vector. Is it possible to model the data using these definitions of the neurons?