
Log-Linear Models, MEMMs, and CRFs

Michael Collins

1 Notation

Throughout this note I’ll use underline to denote vectors. For example,w ∈ Rd will
be a vector with components w1, w2, . . . wd. We use exp(x) for the exponential
function, i.e., exp(x) = ex.

2 Log-linear models

We have sets X and Y: we will assume that Y is a finite set. Our goal is to build a
model that estimates the conditional probability p(y|x) of a label y ∈ Y given an
input x ∈ X . For example, x might be a word, and y might be a candidate part-
of-speech (noun, verb, preposition etc.) for that word. We have a feature-vector
definition φ : X × Y → Rd. We also assume a parameter vector w ∈ Rd. Given
these definitions, log-linear models take the following form:

p(y|x;w) =
exp

(
w · φ(x, y)

)
∑

y′∈Y exp
(
w · φ(x, y′)

)
This is the conditional probability of y given x, under parameters w.

Some motivation for this expression is as follows. The inner product

w · φ(x, y)

can take any value (positive or negative), and can be interpreted as being a measure
of the plausibility of label y given input x. For a given input x, we can calculate this
inner product for each possible label y ∈ Y . We’d like to transform these quantities
into a well-formed distribution p(y|x). If we exponentiate the inner product,

exp
(
w · φ(x, y)

)

1



we have a strictly positive quantity—i.e., a value that is greater than 0. Finally, by
dividing by the normalization constant∑

y′∈Y
exp

(
w · φ(x, y′)

)
we ensure that

∑
y∈Y p(y|x;w) = 1. Hence we have gone from inner products

w · φ(x, y), which can take either positive or negative values, to a probability dis-
tribution.

An important question is how the parameters w can be estimated from data.
We turn to this question next.

The Log-Likelihood Function. To estimate the parameters, we assume that we
have a set of n labeled examples, {(xi, yi)}ni=1. The log-likelihood function is

L(w) =
n∑

i=1

log p(yi|xi;w)

We can think of L(w) as being a function that for a given w measures how well
w explains the labeled examples. A “good” value for w will give a high value for
p(yi|xi;w) for all i = 1 . . . n, and thus will have a high value for L(w).

The maximum-likelihood estimates are

w∗ = arg max
w∈Rd

n∑
i=1

log p(yi|xi;w)

The maximum-likelihood estimates are thus the parameters that best fit the training
set, under the criterion L(w).1

Finding the maximum-likelihood estimates. So given a training set {(xi, yi)}ni=1,
how do we find the maximum-likelihood parameter estimates w∗? Unfortunately,
an analytical solution does not in general exist. Instead, people generally use
gradient-based methods to optimize L(w). The simplest method, “vanilla” gra-
dient ascent, takes roughly the following form:

1. Set w0 to some initial value, for example set w0
j = 0 for j = 1 . . . d

2. For t = 1 . . . T :
1In some cases this maximum will not be well-defined—intuitively, some parameter values may

diverge to +∞ or −∞—but for now we’ll assume that the maximum exists, and that all parameters
take finite values at the maximum.

2



• For j = 1 . . . d, set

wt
j = wt−1

j + αt ×
∂

∂wj
L(wt−1)

where αt > 0 is some stepsize, and ∂
∂wj

L(wt−1) is the derivative of L
with respect to wj .

3. Return the final parameters wT .

Thus at each iteration we calculate the gradient at the current pointwt−1, and move
some distance in the direction of the gradient.

In practice, more sophisticated optimization methods are used: one common
to choice is to use L-BFGS, a quasi-newton method. We won’t go into the details
of these optimization methods in the course: the good news is that good software
packages are available for methods such as L-BFGS. Implementations of L-BFGS
will generally require us to calculate the value of the objective function L(w), and
the value of the partial derivatives, ∂

∂wj
L(w), at any point w. Fortunately, this will

be easy to do.
So what form do the partial derivatives take? A little bit of calculus gives

∂

∂wj
L(w) =

∑
i

φj(xi, yi)−
∑

i

∑
y

p(y|xi;w)φj(xi, y)

The first sum in the expression,
∑

i φj(xi, yi), is the sum of the j’th feature value
φj(xi, yi) across the labeled examples {(xi, yi)}ni=1. The second sum again in-
volves a sum over the training examples, but for each training example we calcu-
late the expected feature value,

∑
y p(y|xi;w)φj(xi, y). Note that this expectation

is taken with respect to the distribution p(y|xi;w) under the current parameter val-
ues w.

Regularized log-likelihood. In many applications, it has been shown to be highly
beneficial to modify the log-likelihood function to include an additional regular-
ization term. The modified criterion is then

L(w) =
n∑

i=1

log p(yi|xi;w)− λ

2
||w||2

where ||w||2 =
∑

j w
2
j , and λ > 0 is parameter dictating the strength of the regu-

larization term. We will again choose our parameter values to be

w∗ = arg max
w∈Rd

L(w)

3



Note that we now have a trade-off when estimating the parameters: we will try to
make the log p(yi|xi;w) terms as high as possible, but at the same time we’ll try
to keep the norm ||w||2 small (the larger the value of λ, the smaller we will require
the norm to be). The regularization term penalizes large parameter values.

Intuitively, we can think of the ||w||2 term as being a penalty on “complexity”
of the model, where the larger the parameters are, the more complex the model is.
We’d like to find a model that fits the data well, but that also has low complexity.2

In practice, the regularization term has been found to be very useful in building
log-linear models, in particular in cases where the number of parameters, d, is
large. This scenario is very common in natural language processing applications. It
is not uncommon for the number of parameters d to be far larger than the number of
training examples n, and in this case we can often still achieve good generalization
performance, as long as a regularizer is used to penalize large values of ||w||2.
(There are close connections to support vector machines, where linear models are
learned in very high dimensional spaces, with good generalization guarantees hold
as long as the margins on training examples are large. Margins are closely related
to norms of parameter vectors.)

Finding the optimal parameters w∗ = arg maxw L(w) can again be achieved
using gradient-based methods (e.g., LBFGS). The partial derivatives are again easy
to compute, and are slightly modified from before:

∂

∂wj
L(w) =

∑
i

φj(xi, yi)−
∑

i

∑
y

p(y|xi;w)φj(xi, y)− λwj

3 MEMMs

We’ll now return to sequence labeling tasks, and describe maximum-entropy Markov
models (MEMMs), which make direct use of log-linear models. In the previous lec-
ture we introduced HMMs as a model for sequence labeling problems. MEMMs
will be a useful alternative to HMMs.

Our goal will be to model the conditional distribution

p(s1, s2 . . . sm|x1 . . . xm)

where each xj for j = 1 . . .m is the j’th input symbol (for example the j’th word
in a sentence), and each sj for j = 1 . . .m is the j’th state. We’ll use S to denote
the set of possible states; we assume that S is a finite set.

2More formally, from a Bayesian standpoint the regularization term can be viewed as log p(w)
where p(w) is a prior (specifically, p(w) is a Gaussian prior): the parameter estimates w∗ are then
MAP estimates. From a frequentist standpoint there have been a number of important results show-
ing that finding parameters with a low norm leads to better generalization guarantees (i.e., better
guarantees of generalization to new, test examples).

4



For example, in part-of-speech tagging of English, S would be the set of all
possible parts of speech in English (noun, verb, determiner, preposition, etc.).
Given a sequence of words x1 . . . xm, there are km possible part-of-speech se-
quences s1 . . . sm, where k = |S| is the number of possible parts of speech. We’d
like to estimate a distribution over these km possible sequences.

In a first step, MEMMs use the following decomposition:

p(s1, s2 . . . sm|x1 . . . xm) =
m∏

i=1

p(si|s1 . . . si−1, x1 . . . xm) (1)

=
m∏

i=1

p(si|si−1, x1 . . . xm) (2)

The first equality is exact (it follows by the chain rule of conditional probabilities).
The second equality follows from an independence assumption, namely that for all
i,

p(si|s1 . . . si−1, x1 . . . xm) = p(si|si−1, x1 . . . xm)

Hence we are making an assumption here that is similar to the Markov assumption
in HMMs, i.e., that the state in the i’th position depends only on the state in the
(i− 1)’th position.

Having made these independence assumptions, we then model each term using
a log-linear model:

p(si|si−1, x1 . . . xm) =
exp

(
w · φ(x1 . . . xm, i, si−1, si)

)
∑

s′∈S exp
(
w · φ(x1 . . . xm, i, si−1, s′)

)
Here φ(x1 . . . xm, i, s, s

′) is a feature vector where:

• x1 . . . xm is the entire sentence being tagged

• i is the position to be tagged (can take any value from 1 to m)

• s is the previous state value (can take any value in S)

• s′ is the new state value (can take any value in S)

See the lecture slides on log-linear models (from Lecture 1) to see examples of
features used in applications such as part-of-speech tagging.

Once we’ve defined the feature vectors φ, we can train the parameters w of the
model in the usual way for log-linear models. The training examples will consist of

5



sentences x1 . . . xm annotated with state sequences s1 . . . sm. Once we’ve trained
the parameters we will have a model of

p(si|si−1, x1 . . . xm)

and hence a model of
p(s1 . . . sm|x1 . . . xm)

The next question will be how to decode with the model.

Decoding with MEMMs. The decoding problem is as follows. We’re given a
new test sequence x1 . . . xm. Our goal is to compute the most likely state sequence
for this test sequence,

arg max
s1...sm

p(s1 . . . sm|x1 . . . xm)

There are km possible state sequences, so for any reasonably large sentence length
m brute-force search through all the possibilities will not be possible.

Fortunately, we will be able to again make use of the Viterbi algorithm: it
will take a very similar form to the Viterbi algorithm for HMMs. The basic data
structure in the algorithm will be a dynamic programming table π with entries

π[j, s]

for j = 1 . . .m, and s ∈ S. π[j, s] will store the maximum probability for any
state sequence ending in state s at position j. More formally, our algorithm will
compute

π[j, s] = max
s1...sj−1

p(s|sj−1, x1 . . . xm)
j−1∏
k=1

p(sk|sk−1, x1 . . . xm)


for all j = 1 . . .m, and for all s ∈ S.

The algorithm is as follows:

• Initialization: for s ∈ S

π[1, s] = p(s|s0, x1 . . . xm)

where s0 is a special “initial” state.

• For j = 2 . . .m, s = 1 . . . k:

π[j, s] = max
s′∈S

[
π[j − 1, s′]× p(s|s′, x1 . . . xm)

]

6



Finally, having filled in the π[j, s] values for all j, s, we can calculate

max
s1...sm

p(s1 . . . sm|x1 . . . xm) = max
s
π[m, s]

The algorithm runs in O(mk2) time (i.e., linear in the sequence length m,
and quadratic in the number of states k). As in the Viterbi algorithm for HMMs,
we can compute the highest-scoring sequence using backpointers in the dynamic
programming algorithm (see the HMM slides from lecture 1).

Comparison between MEMMs and HMMs So what is the motivation for using
MEMMs instead of HMMs? Note that the Viterbi decoding algorithms for the two
models are very similar. In MEMMs, the probability associated with each state
transition si−1 to si is

p(si|si−1, x1 . . . xm) =
exp

(
w · φ(x1 . . . xm, i, si−1, si)

)
∑

s′∈S exp
(
w · φ(x1 . . . xm, i, si−1, s′)

)
In HMMs, the probability associated with each transition is

p(si|si−1)p(xi|si)

The key advantage of MEMMs is that the use of feature vectors φ allows much
richer representations than those used in HMMs. For example, the transition proba-
bility can be sensitive to any word in the input sequence x1 . . . xm. In addition, it is
very easy to introduce features that are sensitive to spelling features (e.g., prefixes
or suffixes) of the current word xi, or of the surrounding words. These features are
useful in many NLP applications, and are difficult to incorporate within HMMs in
a clean way.

4 CRFs

We now turn to conditional random fields (CRFs).
One brief note on notation: for convenience, we’ll use x to refer to an input

sequence x1 . . . xm, and s to refer to a sequence of states s1 . . . sm. The set of
all possible states is again S; the set of all possible state sequences is Sm. In
conditional random fields we’ll again build a model of

p(s1 . . . sm|x1 . . . xm) = p(s|x)

A first key idea in CRFs will be to define a feature vector

Φ(x, s) ∈ Rd

7



that maps an entire input sequence x paired with an entire state sequence s to
some d-dimensional feature vector. We’ll soon give a concrete definition for Φ,
but for now just assume that some definition exists. We will often refer to Φ as
being a “global” feature vector (it is global in the sense that it takes the entire state
sequence into account).

We then build a giant log-linear model,

p(s|x;w) =
exp (w · Φ(x, s))∑

s′∈Sm exp (w · Φ(x, s′))

This is “just” another log-linear model, but it is is “giant” in the sense that: 1) the
space of possible values for s, i.e., Sm, is huge. 2) The normalization constant
(denominator in the above expression) involves a sum over the set Sm. At first
glance, these issues might seem to cause severe computational problems, but we’ll
soon see that under appropriate assumptions we can train and decode efficiently
with this type of model.

The next question is how to define Φ(x, s)? Our answer will be

Φ(x, s) =
m∑

j=1

φ(x, j, sj−1, sj)

where φ(x, j, sj−1, sj) are the same as the feature vectors used in MEMMs. Or put
another way, we’re assuming that for k = 1 . . . d, the k’th global feature is

Φk(x, s) =
m∑

j=1

φk(x, j, sj−1, sj)

Thus Φk is calculated by summing the “local” feature vector φk over the m differ-
ent state transitions in s1 . . . sm.

We now turn to two critical practical issues in CRFs: first, decoding, and sec-
ond, parameter estimation.

Decoding with CRFs The decoding problem in CRFs is as follows: for a given
input sequence x = x1, x2, . . . xm, we would like to find the most likely underlying
state sequence under the model, that is,

arg max
s∈Sm

p(s|x;w)

We simplify this expression as follows:

arg max
s∈Sm

p(s|x;w) = arg max
s∈Sm

exp (w · Φ(x, s))∑
s′∈Sm exp (w · Φ(x, s′))

8



= arg max
s∈Sm

exp (w · Φ(x, s))

= arg max
s∈Sm

w · Φ(x, s)

= arg max
s∈Sm

w ·
m∑

j=1

φ(x, j, sj−1, sj)

= arg max
s∈Sm

m∑
j=1

w · φ(x, j, sj−1, sj)

So we have shown that finding the most likely sequence under the model is equiv-
alent to finding the sequence that maximizes

arg max
s∈Sm

m∑
j=1

w · φ(x, j, sj−1, sj)

This problem has a clear intuition. Each transition from state sj−1 to state sj has
an associated score

w · φ(x, j, sj−1, sj)

This score could be positive or negative. Intuitively, this score will be relatively
high if the state transition is plausible, relatively low if this transition is implausible.
The decoding problem is to find an entire sequence of states such that the sum of
transition scores is maximized.

We can again solve this problem using a variant of the Viterbi algorithm, in a
very similar way to the decoding algorithm for HMMs or MEMMs:

• Initialization: for s ∈ S

π[1, s] = w · φ(x, 1, s0, s)

where s0 is a special “initial” state.

• For j = 2 . . .m, s = 1 . . . k:

π[j, s] = max
s′∈S

[
π[j − 1, s′] + w · φ(x, j, s′, s)

]
We then have

max
s1...sm

m∑
j=1

w · φ(x, j, sj−1, sj) = max
s
π[m, s]

As before, backpointers can be used to allow us to recover the highest scoring state
sequence. The algorithm again runs in O(mk2) time. Hence we have shown that
decoding in CRFs is efficient.

9



Parameter Estimation in CRFs. For parameter estimation, we assume we have
a set of n labeled examples, {(xi, si)}ni=1. Each xi is an input sequence xi

1 . . . x
i
m,

each si is a state sequence si
1 . . . s

i
m. We then proceed in exactly the same way as

for regular log-linear models. The regularized log-likelihood function is

L(w) =
n∑

i=1

log p(si|xi;w)− λ

2
||w||2

Our parameter estimates are then

w∗ = arg max
w∈Rd

n∑
i=1

log p(si|xi;w)− λ

2
||w||2

We’ll again use gradient-based optimization methods to find w∗. As before,
the partial derivatives are

∂

∂wk
L(w) =

∑
i

Φk(xi, si)−
∑

i

∑
s∈Sm

p(s|xi;w)Φk(xi, s)− λwk

The first term is easily computed, because

∑
i

Φk(xi, si) =
∑

i

m∑
j=1

φk(xi, j, si
j−1, s

i
j)

Hence all we have to do is to sum over all training examples i = 1 . . . n, and for
each example sum over all positions j = 1 . . .m.

The second term is more difficult to deal with, because it involves a sum over
Sm, a very large set. However, we will see that this term can be computed effi-
ciently using dynamic programming. The derivation is as follows:

∑
s∈Sm

p(s|xi;w)Φk(xi, s) (3)

=
∑

s∈Sm

p(s|xi;w)
m∑

j=1

φk(xi, j, sj−1, sj) (4)

=
m∑

j=1

∑
s∈Sm

p(s|xi;w)φk(xi, j, sj−1, sj) (5)

=
m∑

j=1

∑
a∈S,b∈S

∑
s∈Sm:

sj−1=a,sj=b

p(s|xi;w)φk(xi, j, sj−1, sj) (6)

10



=
m∑

j=1

∑
a∈S,b∈S

φk(xi, j, a, b)
∑

s∈Sm:

sj−1=a,sj=b

p(s|xi;w) (7)

=
m∑

j=1

∑
a∈S,b∈S

qi
j(a, b)φk(xi, j, a, b) (8)

where
qi
j(a, b) =

∑
s∈Sm:sj−1=a,sj=b

p(s|xi;w)

The important thing to note is that if we can compute the qi
j(a, b) terms efficiently,

we can compute the derivatives efficiently, using the expression in Eq. 8. The
quantity qi

j(a, b) has a fairly intuitive interpretation: it is the probabilty of the i’th
training example xi having state a at position j − 1 and state b at position j, under
the distribution p(s|x;w).

A critical result is that for a given i, all qi
j(a, b) terms can be calculated to-

gether, in O(mk2) time. The algorithm that achieves this is the forward-backward
algorithm. This is another dynamic programming algorithm, and is closely related
to the Viterbi algorithm.

11


