
COMS 6998, Spring 2012: Problem Set 2
Total points: 75 points

Due date: 5pm, 9th April 2012
Late policy: 5 points off for every day late, 0 points if handed in after 5pm on 13th April

Question 1 (15 points)

In this question we’ll derive an EM approach to word clustering. In this model, the training sample
x1, x2, . . . xm is a sequence of m bigrams of the following form: each xi is of the form wi

1, w
i
2 where

wi
1, w

i
2 are words, and wi

2 is seen following wi
1 in the corpus. The hidden variables y can take one of K

values, 1, 2, . . .K. The model is defined as follows:

p(w2, y|w1; Θ) = q(y|w1)r(w2|y)

Thus if V is the vocabulary—the set of possible words in any document—the parameters in the model are:

• q(y|w) for y = 1 . . .K, for w ∈ V

• r(w|y) for y = 1 . . .K and w ∈ V

Our aim in this question will be to derive EM updates which optimize the log-likelihood of the data:

L(Θ) =
m∑
i=1

log p(wi
2|wi

1; Θ) =
m∑
i=1

log
∑
y

q(y|wi
1)r(wi

2|y)

Give pseudo-code showing how to derive an updated parameter vector Θt from a previous parameter vector
Θt−1. I.e., show pseudo-code that takes as input parameter estimates qt−1(y|w) for all y, w and rt−1(w|y)
for all w, y, and as output provides updated parameter estimates qt(y|w) and rt(w|y) using EM.

Question 2 (30 points)

In lecture (see also the accompanying note on EM) we saw how the forward-backward algorithm could be
used to efficiently calculate probabilities of the following form for an HMM:

P (yj = p|x; Θ) =
∑

y:yj=p

p(y|x; Θ)

and
P (yj = p, yj+1 = q|x; Θ) =

∑
y:yj=p,yj+1=q

p(y|x,Θ)

where x is some sequence of output symbols, and Θ are the parameters of the model. Here yj is the j’th
state in a state sequence y, and p, q are integers in the range 1 . . . N assuming an N state HMM.

Question 2(a) (10 points) State how the following quantity can be calculated in terms of the forward-
backward probabilities, and some of the parameters in the model:

P (y2 = 1, y3 = 2, y4 = 1|x; Θ)

(we assume that the sequence x is of length at least 4)



Question 2(b) (10 points) State how the following quantity can be calculated in terms of the forward-
backward probabilities, and some of the parameters in the model:

P (y2 = 1, y5 = 1|x; Θ)

(we assume that the sequence x is of length at least 5. Don’t worry too much about the efficiency of your
solution: we do expect you to use forward and backward terms, but we don’t expect you to calculate any
other quantities using dynamic programming.)

Question 2(c) (10 points) Say that we now wanted to calculate probabilities for an HMM such as the
following:

max
y:yj=p

p(y|x; Θ)

so this is the maximum probability of any state sequence underlying x, with the constraint that the j’th label
yj is equal to p.

How would you modify the definition of the forward and backward terms—i.e., the recursive method for
calculating them—to support this kind of calculation? How would you then calculate

max
y:y3=1

p(y|x; Θ)

assuming that the input sequence x is of length at least 3?

Question 3 (30 points)

We are now going to derive an EM-style model for machine translation. Each training example in our data
consists of a French sentence f together with an English sentence e. Each French sentence f consists of m
words f1 . . . fm; each English sentence e consists of l words e1 . . . el (for simplicity we assume that French
sentences always have length m, and English sentences always have length l).

Our goal is to build a model of
p(f |e)

i.e., the conditional probability of a French sentence f given an English sentence e. To do this we will
introduce hidden variables a1 . . . am. Each hidden variable aj specifies which English word fj is “aligned”
to. Each aj can take any value in 1, 2, . . . l.

For some background on this type of model, the note at

http://www.cs.columbia.edu/∼mcollins/courses/nlp2011/notes/ibm12.pdf

may be useful.

The model then takes the following form:

p(f, a|e) =
m∏
j=1

d(aj |aj−1)
m∏
j=1

t(fj |eaj )

Here we define a0 to be NULL, where NULL is a special state in the model. p(f, a|e) is the joint probability
of alignment sequence a = a1 . . . am, together with French words f = f1 . . . fm, conditioned on English
sentence e = e1 . . . el.

The parameters in this model are as follows:



• d(a′|a) is the conditional probability of seeing alignment value a′, given that the previous alignment
value was a.

• t(f |e) for any French word f and English word e is the conditional probability of seeing French word
f , given that English word e is being translated.

Note that this model form is quite similar to a bigram HMM model. The d parameters are very similar to
transition parameters in a regular HMM. The t parameters are very similar to emission parameters in an
HMM. The only real difference is that the emission probabilities vary depending on the English sentence
being translated.

Question 3(a) (10 points)

Assume that we have parameter values d(a′|a) and t(f |e). State how the forward-backward algorithm can
be used to calculate

P (aj = k|f, e) =
∑

a:aj=k

p(a|f, e)

for any j ∈ {1 . . .m}, k ∈ {1 . . . l}, for a fixed French sentence f and English sentence e.

Question 3(b) (10 points)

Assume that we have parameter values d(a′|a) and t(f |e). State how the forward-backward algorithm can
be used to calculate

P (aj = k, aj+1 = k′|f, e) =
∑

a:aj=k,aj+1=k′

p(a|f, e)

for any j ∈ {1 . . .m− 1}, k ∈ {1 . . . l}, k′ ∈ {1 . . . l}, for a fixed French sentence f and English sentence
e.

Question 3(c) (10 points)

Now assume that we have training examples f (i), e(i) for i = 1 . . . n, where each f (i) is a French sentence,
and each e(i) is an English sentence. Give pseudo-code for an EM algorithm that trains the d(a′|a) and
t(f |e) parameters of the model. (Hint: the quantities computed in questions 3(b) and 3(c) should be very
useful; the algorithm should be very similar to the EM algorithm for HMMs given in class.)


