
COMS E6998-3, Spring 2012, problem set 1
Due date: 5pm, 24th February 2011

Question 1 (40 points)

In conditional random fields (CRFs), a key idea was to define a “global” feature vector

Φ(x, s)

that maps an input sequence x paired with an output sequence s to a d-dimensional feature vector. In bigram
models for sequence modeling, we define

Φ(x, s) =
n∑

j=1

φ(x, j, sj−1, sj)

where φ is a local feature-vector definition. We described a decoding algorithm for CRFs that take this form,
and also an algorithm for parameter estimation.

In this question we’ll consider a trigram model for conditional random fields, where

Φ(x, s) =
n∑

j=1

φ(x, j, sj−2, sj−1, sj)

where φ is again a local feature-vector definition, which can now consider sequences of three tags (sj−2,
sj−1, sj).

Question (15 points): Give pseudo-code for a dynamic-programming algorithm for decoding for the trigram
model.

Question (15 points): In class we described a parameter estimation method for bigram CRF models. De-
scribe an analogous parameter estimation method for trigram models. Your method should use analogous
terms to the qij(a, b) terms employed for bigram models (see the notes on CRFs). (Note that we do not
require you to derive a variant of the forward-backward algorithm for calculation of these q terms; it is
sufficient to define them correctly.)

Question (10 points): Give pseudo code for a perceptron-based algorithm for parameter estimation for the
trigram model.

Question 2 (20 points)

Consider a sequence modeling task where we have the following training data:

• 100 examples where x1 = a, x2 = b, and s1 = A, s2 = B.

• 100 examples where x1 = a, x2 = c, and s1 = A, s2 = C.

• 800 examples where x1 = c, x2 = d, and s1 = B, s2 = D.



Question (10 points): We first train a bigram HMM for the sequence modeling problem. List all non-zero
parameters for the HMM. What is the output from the HMM on the three input sequences a b, a c, and
c d?

Question (10 points): Describe features for a bigram CRF for the sequence modeling problem, which
models the data correctly. (By “correctly” we mean that the output from the model on the input sequences
a b, a c, and c d is A B, A C, and B D respectively.)

Question 3 (30 points)

This question again concerns log-linear models. To recap the details from the lecture notes: we have a set X
of possible inputs, and a finite set Y of possible labels. We have a feature vector f(x, y) ∈ Rd for any x ∈ X
and y ∈ Y . We have a parameter vector v ∈ Rd. The log-linear model defines the conditional probability as

p(y|x; v) =
exp (v · f(x, y))∑

y∈Y exp (v · f(x, y))

To estimate the parameters of the model, we have a set of training examples (x(i), y(i)) for i ∈ {1 . . . n}.
The regularized log-likelihood function is

L(v) =
n∑

i=1

log p(yi|xi; v)− λ

2

∑
j

|vj |

where λ > 0 is a parameter. (Here we use |vj | to refer to the absolute value of vj .)

The optimal parameters are
v∗ = arg max

v∈Rd
L(v)

Note that this is different from the method described in lecture, where we used a regularizer of the form

λ

2

∑
j

v2j

Note also that the term
∑

j |vj | is not differentiable. You should be able to complete this question without
attempting to take derivatives of L(v).

Question (10 points) Assume that for feature f1, we have f1(xi, y) = 0 for all i ∈ {1 . . . n}, y ∈ Y . What
is the value of v∗1? Make sure to justify your answer (5 out of 10 points will be given for the justification).

Question (10 points) Assume that for feature f2, we have f2(xi, y) = 10 for all i ∈ {1 . . . n}, y ∈ Y . What
is the value of v∗2? Make sure to justify your answer (5 out of 10 points will be given for the justification).

Question (10 points) Assume that for feature f3, we have f3(xi, y) = i for all i ∈ {1 . . . n}, y ∈ Y . What
is the value of v∗3? Make sure to justify your answer (5 out of 10 points will be given for the justification).

Question 4 (30 points)

Figure 1 shows the Pegasos algorithm, as introduced in lecture. We have augmented the algorithm to include
the following variables:



• Inputs: training set {(xi, yi)}ni=1, T

• Initialization: θ1 = 0, M1 = 0

• For t = 1 . . . T :

1. Pick an example i ∈ {1 . . . n} uniformly at random

2. If yi(θt · xi) < 1

θt+1 =

(
1− 1

t

)
θt +

1

λt
yixi

Mt+1 = Mt + 1

x′Mt+1
= xi

y′Mt+1
= yi

else if yi(θt · xi) ≥ 1

θt+1 =

(
1− 1

t

)
θt

Mt+1 = Mt

• Return θT+1

Figure 1: The Pegasos algorithm, as described in lecture. The algorithm has the following additional vari-
ables: Mt for t ≥ 1 is the number of cases where yi(θt · xi) < 1 up to iteration t of the algorithm. x′i, y

′
i for

i = 1 . . .Mt is the sequence of examples up to iteration t where yi(θt · xi) < 1.

• Mt for t ≥ 1 is the number of cases up to iteration t where the condition yi(θt · xi) < 1 is reached.

• x′i, y′i for i = 1 . . .Mt is a record of the examples where the condition yi(θt · xi) < 1 was reached.

The question is as follows: Prove by induction that for any t ≥ 2,

θt =
1

λ(t− 1)

Mt∑
i=1

y′ix
′
i

Question 5 (30 points)

Figure 2 gives the structured perceptron, as described in lecture. We gave the following definition of sepa-
rability, which is a generalization of the definition for the perceptron for binary classification:

Definition: The training set {(xi, si)}ni=1 is separable with margin δ > 0, if there exists some parameter
vector w such that:

1. ||w||2 = 1



• Input: labeled examples, {(xi, si)}ni=1.

• Initialization: w = 0

• For t = 1 . . . T , for i = 1 . . . n:

– Use the Viterbi algorithm to calculate

s∗ = arg max
s∈Y

w · Φ(xi, s) = arg max
s∈Y

m∑
j=1

w · φ(x, j, sj−1, sj)

– Updates:

w = w + Φ(xi, si)− Φ(xi, s∗)

= w +
m∑
j=1

φ(x, j, sij−1, s
i
j)−

m∑
j=1

φ(x, j, s∗j−1, s
∗
j )

• Return w

Figure 2: The structured perceptron algorithm.

2. For all i = 1 . . . n, for all s1 . . . sm such that sj 6= sij for some j,

w · Φ(xi, si)− w · Φ(xi, s) ≥ δ

We then gave the following theorem:

Theorem: Assume that the training set is separable with margin δ, and that for all i, for all state sequences
s = s1 . . . sm,

||Φ(xi, si)− Φ(xi, s)||2 ≤ R2

Then the structured perceptron (see algorithm in figure 2) makes at most

R2

δ2

mistakes. (A “mistake” occurs each time s∗ 6= si in the algorithm.)

Question: Give a proof of the theorem. (The proof should be similar to the proof for the perceptron for
binary classification; see the note on the class webpage.)


