COMS E6998-3, Spring 2012, problem set 1

Due date: 5pm, 24th February 2011

Question 1 (40 points)

In conditional random fields (CRFs), a key idea was to define a "global" feature vector

$$
\underline{\Phi}(\underline{x}, \underline{s})
$$

that maps an input sequence \underline{x} paired with an output sequence \underline{s} to a d-dimensional feature vector. In bigram models for sequence modeling, we define

$$
\underline{\Phi}(\underline{x}, \underline{s})=\sum_{j=1}^{n} \underline{\phi}\left(\underline{x}, j, s_{j-1}, s_{j}\right)
$$

where ϕ is a local feature-vector definition. We described a decoding algorithm for CRFs that take this form, and also an algorithm for parameter estimation.

In this question we'll consider a trigram model for conditional random fields, where

$$
\underline{\Phi}(\underline{x}, \underline{s})=\sum_{j=1}^{n} \underline{\phi}\left(\underline{x}, j, s_{j-2}, s_{j-1}, s_{j}\right)
$$

where ϕ is again a local feature-vector definition, which can now consider sequences of three tags (s_{j-2}, s_{j-1}, s_{j}).

Question (15 points): Give pseudo-code for a dynamic-programming algorithm for decoding for the trigram model.

Question (15 points): In class we described a parameter estimation method for bigram CRF models. Describe an analogous parameter estimation method for trigram models. Your method should use analogous terms to the $q_{j}^{i}(a, b)$ terms employed for bigram models (see the notes on CRFs). (Note that we do not require you to derive a variant of the forward-backward algorithm for calculation of these q terms; it is sufficient to define them correctly.)

Question (10 points): Give pseudo code for a perceptron-based algorithm for parameter estimation for the trigram model.

Question 2 (20 points)

Consider a sequence modeling task where we have the following training data:

- 100 examples where $x_{1}=\mathrm{a}, x_{2}=\mathrm{b}$, and $s_{1}=\mathrm{A}, s_{2}=\mathrm{B}$.
- 100 examples where $x_{1}=\mathrm{a}, x_{2}=\mathrm{c}$, and $s_{1}=\mathrm{A}, s_{2}=\mathrm{C}$.
- 800 examples where $x_{1}=\mathrm{c}, x_{2}=\mathrm{d}$, and $s_{1}=\mathrm{B}, s_{2}=\mathrm{D}$.

Question (10 points): We first train a bigram HMM for the sequence modeling problem. List all non-zero parameters for the HMM. What is the output from the HMM on the three input sequences a b, a c, and c d?

Question (10 points): Describe features for a bigram CRF for the sequence modeling problem, which models the data correctly. (By "correctly" we mean that the output from the model on the input sequences a b, a c, and c d is A B, A C, and B D respectively.)

Question 3 (30 points)

This question again concerns log-linear models. To recap the details from the lecture notes: we have a set \mathcal{X} of possible inputs, and a finite set \mathcal{Y} of possible labels. We have a feature vector $f(x, y) \in \mathbb{R}^{d}$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. We have a parameter vector $v \in \mathbb{R}^{d}$. The log-linear model defines the conditional probability as

$$
p(y \mid x ; v)=\frac{\exp (v \cdot f(x, y))}{\sum_{y \in \mathcal{Y}} \exp (v \cdot f(x, y))}
$$

To estimate the parameters of the model, we have a set of training examples $\left(x^{(i)}, y^{(i)}\right)$ for $i \in\{1 \ldots n\}$. The regularized log-likelihood function is

$$
L(v)=\sum_{i=1}^{n} \log p\left(y_{i} \mid x_{i} ; v\right)-\frac{\lambda}{2} \sum_{j}\left|v_{j}\right|
$$

where $\lambda>0$ is a parameter. (Here we use $\left|v_{j}\right|$ to refer to the absolute value of v_{j}.)
The optimal parameters are

$$
v^{*}=\arg \max _{v \in \mathbb{R}^{d}} L(v)
$$

Note that this is different from the method described in lecture, where we used a regularizer of the form

$$
\frac{\lambda}{2} \sum_{j} v_{j}^{2}
$$

Note also that the term $\sum_{j}\left|v_{j}\right|$ is not differentiable. You should be able to complete this question without attempting to take derivatives of $L(v)$.

Question (10 points) Assume that for feature f_{1}, we have $f_{1}\left(x_{i}, y\right)=0$ for all $i \in\{1 \ldots n\}, y \in \mathcal{Y}$. What is the value of v_{1}^{*} ? Make sure to justify your answer (5 out of 10 points will be given for the justification).

Question (10 points) Assume that for feature f_{2}, we have $f_{2}\left(x_{i}, y\right)=10$ for all $i \in\{1 \ldots n\}, y \in \mathcal{Y}$. What is the value of v_{2}^{*} ? Make sure to justify your answer (5 out of 10 points will be given for the justification).

Question (10 points) Assume that for feature f_{3}, we have $f_{3}\left(x_{i}, y\right)=i$ for all $i \in\{1 \ldots n\}, y \in \mathcal{Y}$. What is the value of v_{3}^{*} ? Make sure to justify your answer (5 out of 10 points will be given for the justification).

Question 4 (30 points)

Figure 1 shows the Pegasos algorithm, as introduced in lecture. We have augmented the algorithm to include the following variables:

- Inputs: training set $\left\{\left(\underline{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}, T$
- Initialization: $\underline{\theta}_{1}=\underline{0}, M_{1}=0$
- For $t=1 \ldots T$:

1. Pick an example $i \in\{1 \ldots n\}$ uniformly at random
2. If $y_{i}\left(\underline{\theta}_{t} \cdot \underline{x}_{i}\right)<1$

$$
\begin{aligned}
\underline{\theta}_{t+1} & =\left(1-\frac{1}{t}\right) \underline{\theta}_{t}+\frac{1}{\lambda t} y_{i} \underline{x}_{i} \\
M_{t+1} & =M_{t}+1 \\
\underline{x}_{M_{t+1}}^{\prime} & =\underline{x}_{i} \\
y_{M_{t+1}}^{\prime} & =y_{i}
\end{aligned}
$$

else if $y_{i}\left(\underline{\theta}_{t} \cdot \underline{x}_{i}\right) \geq 1$

$$
\begin{gathered}
\underline{\theta}_{t+1}=\left(1-\frac{1}{t}\right) \underline{\theta}_{t} \\
M_{t+1}=M_{t}
\end{gathered}
$$

- Return $\underline{\theta}_{T+1}$

Figure 1: The Pegasos algorithm, as described in lecture. The algorithm has the following additional variables: M_{t} for $t \geq 1$ is the number of cases where $y_{i}\left(\underline{\theta}_{t} \cdot \underline{x}_{i}\right)<1$ up to iteration t of the algorithm. $x_{i}^{\prime}, y_{i}^{\prime}$ for $i=1 \ldots M_{t}$ is the sequence of examples up to iteration t where $y_{i}\left(\underline{\theta}_{t} \cdot \underline{x}_{i}\right)<1$.

- M_{t} for $t \geq 1$ is the number of cases up to iteration t where the condition $y_{i}\left(\underline{\theta}_{t} \cdot \underline{x}_{i}\right)<1$ is reached.
- $x_{i}^{\prime}, y_{i}^{\prime}$ for $i=1 \ldots M_{t}$ is a record of the examples where the condition $y_{i}\left(\underline{\theta}_{t} \cdot \underline{x}_{i}\right)<1$ was reached.

The question is as follows: Prove by induction that for any $t \geq 2$,

$$
\underline{\theta}_{t}=\frac{1}{\lambda(t-1)} \sum_{i=1}^{M_{t}} y_{i}^{\prime} \underline{x}_{i}^{\prime}
$$

Question 5 (30 points)

Figure 2 gives the structured perceptron, as described in lecture. We gave the following definition of separability, which is a generalization of the definition for the perceptron for binary classification:

Definition: The training set $\left\{\left(\underline{x}^{i}, \underline{s}^{i}\right)\right\}_{i=1}^{n}$ is separable with margin $\delta>0$, if there exists some parameter vector \underline{w} such that:

1. $\|\underline{w}\|^{2}=1$

- Input: labeled examples, $\left\{\left(\underline{x}^{i}, \underline{s}^{i}\right)\right\}_{i=1}^{n}$.
- Initialization: $\underline{w}=\underline{0}$
- For $t=1 \ldots T$, for $i=1 \ldots n$:
- Use the Viterbi algorithm to calculate

$$
\underline{s}^{*}=\arg \max _{\underline{s} \in \mathcal{Y}} \underline{w} \cdot \underline{\Phi}\left(\underline{x}^{i}, \underline{s}\right)=\arg \max _{\underline{s} \in \mathcal{Y}} \sum_{j=1}^{m} \underline{w} \cdot \underline{\phi}\left(\underline{x}, j, s_{j-1}, s_{j}\right)
$$

- Updates:

$$
\begin{aligned}
\underline{w} & =\underline{w}+\underline{\Phi}\left(\underline{x}^{i}, \underline{s}^{i}\right)-\underline{\Phi}\left(\underline{x}^{i}, \underline{s}^{*}\right) \\
& =\underline{w}+\sum_{j=1}^{m} \underline{\phi}\left(\underline{x}, j, s_{j-1}^{i}, s_{j}^{i}\right)-\sum_{j=1}^{m} \underline{\phi}\left(\underline{x}, j, s_{j-1}^{*}, s_{j}^{*}\right)
\end{aligned}
$$

- Return \underline{w}

Figure 2: The structured perceptron algorithm.
2. For all $i=1 \ldots n$, for all $s_{1} \ldots s_{m}$ such that $s_{j} \neq s_{j}^{i}$ for some j,

$$
\underline{w} \cdot \underline{\Phi}\left(\underline{x}^{i}, \underline{s}^{i}\right)-\underline{w} \cdot \underline{\Phi}\left(\underline{x}^{i}, \underline{s}\right) \geq \delta
$$

We then gave the following theorem:
Theorem: Assume that the training set is separable with margin δ, and that for all i, for all state sequences $\underline{s}=s_{1} \ldots s_{m}$,

$$
\left\|\underline{\Phi}\left(\underline{x}^{i}, \underline{s}^{i}\right)-\underline{\Phi}\left(\underline{x}^{i}, \underline{s}\right)\right\|^{2} \leq R^{2}
$$

Then the structured perceptron (see algorithm in figure 2) makes at most

$$
\frac{R^{2}}{\delta^{2}}
$$

mistakes. (A "mistake" occurs each time $\underline{s}^{*} \neq \underline{s}^{i}$ in the algorithm.)
Question: Give a proof of the theorem. (The proof should be similar to the proof for the perceptron for binary classification; see the note on the class webpage.)

