Convergence Proof for the Perceptron Algorithm

Michael Collins

Figure 1 shows the perceptron learning algorithm, as described in lecture. In this note we give a convergence proof for the algorithm (also covered in lecture).

The convergence theorem is as follows:

Theorem 1 Assume that there exists some parameter vector \(\theta^* \) such that \(||\theta^*|| = 1 \), and some \(\gamma > 0 \) such that for all \(t = 1 \ldots n \),

\[
y_t (x_t \cdot \theta^*) \geq \gamma
\]

Assume in addition that for all \(t = 1 \ldots n \), \(||x_t|| \leq R \).

Then the perceptron algorithm makes at most \(\frac{R^2}{\gamma^2} \) errors. (The definition of an error is as follows: an error occurs whenever we have \(y_t' \neq y_t \) for some \((j,t) \) pair in the algorithm.)

Note that for any vector \(x \), we use \(||x|| \) to refer to the Euclidean norm of \(x \), i.e.,

\[
||x|| = \sqrt{\sum_i x_i^2}.
\]

Proof: First, define \(\theta^k \) to be the parameter vector when the algorithm makes its \(k \)'th error. Note that we have

\[
\theta^1 = \theta = \theta^*
\]

Next, assuming the \(k \)'th error is made on example \(t \), we have

\[
\theta^{k+1} \cdot \theta^* = (\theta^k + y_t x_t) \cdot \theta^*
\]

\[
= \theta^k \cdot \theta^* + y_t x_t \cdot \theta^* \tag{1}
\]

\[
\geq \theta^k \cdot \theta^* + \gamma \tag{2}
\]

Eq. 1 follows by the definition of the perceptron updates. Eq. 3 follows because by the assumptions of the theorem, we have

\[
y_t x_t \cdot \theta^* \geq \gamma
\]
Definition: \(\text{sign}(z) = 1 \) if \(z \geq 0 \), \(-1\) otherwise.

Inputs: number of iterations, \(T \); training examples \((x_t, y_t)\) for \(t \in \{1 \ldots n\} \) where \(x \in \mathbb{R}^d \) is an input, and \(y_t \in \{-1, +1\} \) is a label.

Initialization: \(\theta = 0 \) (i.e., all parameters are set to 0)

Algorithm:
- For \(j = 1 \ldots T
 - For \(t = 1 \ldots n \)
 1. \(y' = \text{sign}(x_t \cdot \theta) \)
 2. If \(y' \neq y_t \) Then \(\theta = \theta + y_t x_t \), Else leave \(\theta \) unchanged

Output: parameters \(\theta \)

![Figure 1: The perceptron learning algorithm.](image)

It follows by induction on \(k \) (recall that \(\|\theta^1\| = 0 \)), that

\[
\theta^{k+1} \cdot \theta^* \geq k \gamma
\]

In addition, because \(\|\theta^{k+1}\| \times \|\theta^*\| \geq \theta^{k+1} \cdot \theta^* \), and \(\|\theta^*\| = 1 \), we have

\[
\|\theta^{k+1}\| \geq k \gamma \tag{4}
\]

In the second part of the proof, we will derive an upper bound on \(\|\theta^{k+1}\| \). We have

\[
\|\theta^{k+1}\|^2 = \|\theta^k + y_t x_t\|^2 \tag{5}
\]

\[
= \|\theta^k\|^2 + y_t^2 \|x_t\|^2 + 2 y_t x_t \cdot \theta^k \tag{6}
\]

\[
\leq \|\theta^k\|^2 + R^2 \tag{7}
\]

The equality in Eq. 5 follows by the definition of the perceptron updates. Eq. 7 follows because we have: 1) \(y_t^2 \|x_t\|^2 = \|x_t\|^2 \leq R^2 \) by the assumptions of the theorem, and because \(y_t^2 = 1 \); 2) \(y_t x_t \cdot \theta^k \leq 0 \) because we know that the parameter vector \(\theta^k \) gave an error on the \(t \)th example.

It follows by induction on \(k \) (recall that \(\|\theta^1\|^2 = 0 \)), that

\[
\|\theta^{k+1}\|^2 \leq k R^2 \tag{8}
\]
Combining the bounds in Eqs. 4 and 8 gives

\[k^2 \gamma^2 \leq \|g^{k+1}\|^2 \leq kR^2 \]

describing which it follows that

\[k \leq \frac{R^2}{\gamma^2} \]

\[\square \]