The Inside-Outside Algorithm

Michael Collins

1 Introduction

This note describes the *inside-outside* algorithm. The inside-outside algorithm has very important applications to statistical models based on context-free grammars. In particular, it is used in EM estimation of probabilistic context-free grammars, and it is used in estimation of discriminative models for context-free parsing.

As we will see, the inside-outside algorithm has many similarities to the forwardbackward algorithm for hidden Markov models. It computes analogous quantities to the forward and backward terms, for context-free trees.

2 **Basic Definitions**

This section gives some basic definitions. We first give definitions for contextfree grammars, and for a representation of parse trees. We then describe *potential functions* over parse trees. The next section describes the quantities computed by the inside-outside algorithm, and the algorithm itself.

2.1 Context-Free Grammars, and Parse Trees

The set-up is as follows. Assume that we have some input sentence $x_1 \dots x_n$, where *n* is the length of the sentence. Assume in addition we have a context-free grammar (CFG) $G = (N, \Sigma, R, S)$ in Chomsky normal form, where:

- N is a finite set of non-terminal symbols.
- Σ is a finite set of terminal symbols.
- *R* is a finite set of rules. The grammar is in Chomsky normal form, so each rule takes one of two forms: 1) *A* → *BC* where *A*, *B*, *C* are all non-terminal symbols; 2) *A* → *x* where *A* is a non-terminal, and *x* is a terminal symbol.
- $S \in N$ is a distinguished start symbol.

The previous class note on PCFGs (posted on the webpage) has full details of context-free grammars. For the input sentence $x_1 \dots x_n$, the CFG defines a set of possible parse trees, which we will denote as \mathcal{T} .

Any parse tree $t \in \mathcal{T}$ can be represented as a set of of *rule productions*. Each rule production can take one of two forms:

- ⟨A → B C, i, k, j⟩ where A → B C is a rule in the grammar, and i, k, j are indices such that 1 ≤ i ≤ k < j ≤ n. A rule production of this form specifies that the rule A → B C is seen with non-terminal A spanning words x_i...x_j in the input string; non-terminal B spanning words x_{k+1}...x_j in the input string; and non-terminal C spanning words x_{k+1}...x_j in the input string.
- ⟨A, i⟩ where A is a non-terminal, and i is an index with i ∈ {1, 2, ... n}. A rule production of this form specifies that the rule A → x_i is seen in a parse tree, with A above the i'th word in the input string.

As an example, consider the following parse tree:

This tree contains the following rule productions:

$$\begin{split} & \textbf{S} \rightarrow \textbf{NP} \ \textbf{VP}, 1, 2, 4 \\ & \textbf{NP} \rightarrow \textbf{D} \ \textbf{N}, 1, 1, 2 \\ & \textbf{VP} \rightarrow \textbf{V} \ \textbf{P}, 3, 3, 4 \\ & \textbf{D}, 1 \\ & \textbf{N}, 2 \\ & \textbf{V}, 3 \\ & \textbf{P}, 4 \end{split}$$

2.2 Potential Functions

We now define potential functions over parse trees. For any rule production r (of the form $\langle A \rightarrow B \ C, i, k, j \rangle$ or $\langle A, i \rangle$) we will use $\psi(r)$ to denote the *potential* for that rule. The potential function $\psi(r)$ has the property that $\psi(r) \ge 0$ for all rule productions r.

The potential for an entire tree t is defined as follows:

$$\begin{split} \psi(t) &= \prod_{r \in t} \psi(r) \\ &= \left(\prod_{\langle A \to B \ C, i, k, j \rangle \in t} \psi(A \to B \ C, i, k, j) \right) \times \left(\prod_{\langle A, i \rangle \in t} \psi(A, i) \right) \end{split}$$

Here we write $r \in t$ if the parse tree t contains the rule production r. As an example, consider the parse tree we gave earlier. The potential for that parse tree would be

$$\begin{array}{l} \psi(\mathtt{S} \rightarrow \mathtt{NP} \ \mathtt{VP}, 1, 2, 4) \times \psi(\mathtt{NP} \rightarrow \mathtt{D} \ \mathtt{N}, 1, 1, 2) \times \psi(\mathtt{VP} \rightarrow \mathtt{V} \ \mathtt{P}, 3, 3, 4) \\ \times \psi(\mathtt{D}, 1) \times \psi(\mathtt{N}, 2) \times \psi(\mathtt{V}, 3) \times \psi(\mathtt{P}, 4) \end{array}$$

Hence to calculate the potential for a parse tree we simply read off the rule productions in the parse tree, and multiply the individual rule potentials.

Note that the potential for an entire parse tree satisfies $\psi(t) \ge 0$, because each of the individual rule potentials $\psi(r)$ satisfies $\psi(r) \ge 0$.

In practice, the rule potentials might be defined in a number of ways. In one setting, we might have a probabilistic CFG (PCFG), where each rule $\alpha \rightarrow \beta$ in the grammar has an associated parameter $q(\alpha \rightarrow \beta)$. This parameter can be interpreted as the conditional probability of seeing the rule $\alpha \rightarrow \beta$, given that the non-terminal α is being expanded. We would then define

$$\psi(A \to B \ C, i, k, j) = q(A \to B \ C)$$

and

$$\psi(A,i) = q(A \to x_i)$$

Under these definitions, for any tree t, the potential $\psi(t) = \prod_{r \in t} \psi(r)$ is simply the probability for that parse tree under the PCFG.

As a second example, consider a conditional random field (CRF) style model for parsing with CFGs (see the lecture slides from earlier in the course). In this case each rule production r has a feature vector $\underline{\phi}(r) \in \mathbb{R}^d$, and in addition we assume a parameter vector $\underline{v} \in \mathbb{R}^d$. We can then define the potential functions as

$$\psi(r) = \exp\{\underline{v} \cdot \underline{\phi}(r)\}\$$

The potential function for an entire tree is then

$$\psi(t) = \prod_{r \in t} \psi(r) = \prod_{r \in t} \exp\{\underline{v} \cdot \underline{\phi}(r)\} = \exp\{\sum_{r \in t} \underline{v} \cdot \underline{\phi}(r)\}$$

Note that this is closely related to the distribution defined by a CRF-style model: in particular, under the CRF we have for any tree t

$$p(t|x_1 \dots x_n) = \frac{\psi(t)}{\sum_{t \in \mathcal{T}} \psi(t)}$$

where \mathcal{T} again denotes the set of all parse trees for $x_1 \dots x_n$ under the CFG.

3 The Inside-Outside Algorithm

3.1 Quantities Computed by the Inside-Outside Algorithm

Given the definitions in the previous section, we now describe the quantities calculated by the inside-outside algorithm. The inputs to the algorithm are the following:

- A sentence $x_1 \dots x_n$, where each x_i is a word.
- A CFG (N, Σ, R, S) in Chomsky normal form.
- A potential function ψ(r) that maps any rule production r of the form ⟨A → B C, i, k, j⟩ or ⟨A, i⟩ to a value ψ(r) ≥ 0.

As before, we define \mathcal{T} to be the set of all possible parse trees for $x_1 \dots x_n$ under the CFG, and we define $\psi(t) = \prod_{r \in t} \psi(r)$ to be the potential function for any tree.

Given these inputs, the inside-outside algorithm computes the following quantities:

- 1. $Z = \sum_{t \in \mathcal{T}} \psi(t)$.
- 2. For all rule productions r,

$$\mu(r) = \sum_{t \in \mathcal{T}: r \in t} \psi(t)$$

3. For all non-terminals $A \in N$, for all indicies i, j such that $1 \le i \le j \le n$,

$$\mu(A, i, j) = \sum_{t \in \mathcal{T}: (A, i, j) \in t} \psi(t)$$

Here we write $(A, i, j) \in t$ if the parse tree t contains the terminal A spanning words $x_i \dots x_j$ in the input. For example, in the example parse tree given before, the following (A, i, j) triples are seen in the tree: $\langle S, 1, 4 \rangle$; $\langle NP, 1, 2 \rangle$; $\langle VP, 3, 4 \rangle$; $\langle D, 1, 1 \rangle$; $\langle N, 2, 2 \rangle$; $\langle V, 3, 3 \rangle$; $\langle P, 4, 4 \rangle$.

Note that there is a close correspondence between these terms, and the terms computed by the forward-backward algorithm (see the previous notes).

In words, the quantity Z is the sum of potentials for all possible parse trees for the input $x_1 \ldots x_n$. The quantity $\mu(r)$ for any rule production r is the sum of potentials for all parse trees that contain the rule production r. Finally, the quantity $\mu(A, i, j)$ is the sum of potentials for all parse trees containing non-terminal A spanning words $x_i \ldots x_j$ in the input.

We will soon see how these calculations can be applied within a particularly context, namely EM-based estimation of the parameters of a PCFG. First, however, we give the algorithm.

3.2 The Inside-Outside Algorithm

Figure 3.2 shows the inside-outside algorithm. The algorithm takes as its input a sentence, a CFG, and a potential function $\psi(r)$ that maps any rule production r to a value $\psi(r) \ge 0$. As output, it returns values for Z, $\mu(A, i, j)$ and $\mu(r)$, where r can be any rule production.

The algorithm makes use of inside terms $\alpha(A, i, j)$ and outside terms $\beta(A, i, j)$. In the first stage of the algorithm, the $\alpha(A, i, j)$ terms are calculated using a simple recursive definition. In the second stage, the $\beta(A, i, j)$ terms are calculated, again using a relatively simple recursive definition. Note that the definition of the $\beta(A, i, j)$ terms depends on the α terms computed in the first stage of the algorithm.

The α and β terms are analogous to backward and forward terms in the forwardbackward algorithm. The next section gives a full explanation of the inside and outside terms, together with the justification for the algorithm.

3.3 Justification for the Inside-Outside Algorithm

We now give justification for the algorithm. We first give a precise definition of the quantities that the α and β terms correspond to, and describe how this leads to the definitions of the Z and μ terms. We then show that the recursive definitions of the α and β terms are correct.

3.3.1 Interpretation of the α Terms

Again, take $x_1 \dots x_n$ to be the input to the inside-outside algorithm. Before we had defined \mathcal{T} to be the set of all possible parse trees under the CFG for the input sentence. In addition, define

 $\mathcal{T}(A, i, j)$

Inputs: A sentence $x_1 \ldots x_n$, where each x_i is a word. A CFG (N, Σ, R, S) in Chomsky normal form. A potential function $\psi(r)$ that maps any rule production r of the form $\langle A \rightarrow B \ C, i, k, j \rangle$ or $\langle A, i \rangle$ to a value $\psi(r) \ge 0$.

Data structures:

- $\alpha(A, i, j)$ for any $A \in N$, for any (i, j) such that $1 \leq i \leq j \leq n$ is the inside term for (A, i, j).
- $\beta(A, i, j)$ for any $A \in N$, for any (i, j) such that $1 \le i \le j \le n$ is the outside term for (A, i, j).

Inside terms, base case:

For all i ∈ {1...n}, for all A ∈ N, set α(A, i, i) = ψ(A, i) if the rule A → x_i is in the CFG, set α(A, i, i) = 0 otherwise.

Inside terms, recursive case:

• For all $A \in N$, for all (i, j) such that $1 \le i < j \le n$,

$$\alpha(A,i,j) = \sum_{A \to B} \sum_{C \in R} \sum_{k=i}^{j-1} \left(\psi(A \to B \ C,i,k,j) \times \alpha(B,i,k) \times \alpha(C,k+1,j) \right)$$

Outside terms, base case:

• Set $\beta(S, 1, n) = 1$. Set $\beta(A, 1, n) = 0$ for all $A \in N$ such that $A \neq S$.

Outside terms, recursive case:

• For all $A \in N$, for all (i, j) such that $1 \le i \le j \le n$ and $(i, j) \ne (1, n)$,

$$\begin{split} \beta(A,i,j) &= \sum_{B \to C} \sum_{A \in R} \sum_{k=1}^{i-1} \left(\psi(B \to C \ A,k,i-1,j) \times \alpha(C,k,i-1) \times \beta(B,k,j) \right) \\ &+ \sum_{B \to A} \sum_{C \in R} \sum_{k=j+1}^{n} \left(\psi(B \to A \ C,i,j,k) \times \alpha(C,j+1,k) \times \beta(B,i,k) \right) \end{split}$$

Outputs: Return

$$\begin{array}{rcl} Z &=& \alpha(S,1,n) \\ \mu(A,i,j) &=& \alpha(A,i,j) \times \beta(A,i,j) \\ \mu(A,i) &=& \mu(A,i,i) \\ \mu(A \to B\ C,i,k,j) &=& \beta(A,i,j) \times \psi(A \to B\ C,i,k,j) \times \alpha(B,i,k) \times \alpha(C,k+1,j) \end{array}$$

Figure 1: The inside-outside algorithm.

to be the set of all possible trees rooted in non-terminal A, and spanning words $x_i \dots x_j$ in the sentence. Note that under this definition, $\mathcal{T} = \mathcal{T}(S, 1, n)$ (the full set of parse trees for the input sentence is equal to the full set of trees rooted in the symbol S, spanning words $x_1 \dots x_n$).

As an example, for the input sentence *the dog saw the man in the park*, under an appropriate CFG, one member of $\mathcal{T}(NP, 4, 8)$ would be

The set $\mathcal{T}(NP, 4, 8)$ would be the set of all possible parse trees rooted in NP, spanning words $x_4 \dots x_8 = the man$ in the park.

Each $t \in \mathcal{T}(A,i,j)$ has an associated potential, defined in the same way as before as

$$\psi(t) = \prod_{r \in t} \psi(r)$$

We now claim the following: consider the $\alpha(A, i, j)$ terms calculated in the inside-outside algorithm. Then

$$\alpha(A, i, j) = \sum_{t \in \mathcal{T}(A, i, j)} \psi(t)$$

Thus the inside term $\alpha(A, i, j)$ is simply the sum of potentials for all trees spanning words $x_i \dots x_j$, rooted in the symbol A.

3.3.2 Interpretation of the β Terms

Again, take $x_1 \dots x_n$ to be the input to the inside-outside algorithm. Now, for any non-terminal A, for any (i, j) such that $1 \le i \le j \le n$, define

$$\mathcal{O}(A, i, j)$$

to be the set of all *outside trees* with non-terminal A, and span $x_i \dots x_j$.

To illustrate the idea of an outside tree, again consider an example where the input sentence is *the dog saw the man in the park*. Under an appropriate CFG, one member of $\mathcal{T}(NP, 4, 5)$ would be

This tree is rooted in the symbol S. The leafs of the tree form the sequence $x_1 \dots x_3$ NP $x_6 \dots x_n$.

More generally, an outside tree for non-terminal A, with span $x_i \dots x_j$, is a tree with the following properties:

- The tree is rooted in the symbol S.
- Each rule in the tree is a valid rule in the underlying CFG (e.g., S -> NP VP, NP -> D N, D -> the, etc.)
- The leaves of the tree form the sequence $x_1 \dots x_{i-1} \land x_{i+1} \dots x_n$.

Each outside tree t again has an associated potential, equal to

$$\psi(t) = \prod_{r \in t} \psi(r)$$

We simply read off the rule productions in the outside tree, and take their product.

Again, recall that we defined $\mathcal{O}(A, i, j)$ to be the set of all possible outside trees with non-terminal A and span $x_i \dots x_j$. We now make the following claim. Consider the $\beta(A, i, j)$ terms calculated by the inside-outside algorithm. Then

$$\beta(A, i, j) = \sum_{t \in \mathcal{O}(A, i, j)} \psi(t)$$

In words, the outside term for (A, i, j) is the sum of potentials for all outside trees in the set $\mathcal{O}(A, i, j)$.

3.3.3 Putting the α and β Terms Together

We now give justification for the Z and μ terms calculated by the algorithm. First, consider Z. Recall that we would like to compute

$$Z = \sum_{t \in \mathcal{T}} \psi(t)$$

and that the algorithm has the definition

$$Z = \alpha(S, 1, n)$$

By definition, $\alpha(S, 1, n)$ is the sum of potentials for all trees rooted in S, spanning words $x_1 \dots x_n$ —i.e., the sum of potentials for all parse trees of the input sentence—so this definition is correct.

Next, recall that we would also like to compute

$$\mu(A, i, j) = \sum_{t \in \mathcal{T}: (A, i, j) \in t} \psi(t)$$

and that the algorithm computes this as

$$\mu(A, i, j) = \alpha(A, i, j) \times \beta(A, i, j)$$

How is this latter expression justified?

First, note that any tree with non-terminal A spanning words $x_i \ldots x_j$ can be decomposed into an outside tree in $\mathcal{O}(A, i, j)$ and an inside tree in $\mathcal{T}(A, i, j)$. For example, consider the example used above, with the triple (NP, 4, 5). One parse tree that contains an NP spanning words $x_4 \ldots x_5$ is

This can be decomposed into the outside tree

together with the inside tree

It follows that if we denote the outside tree by t_1 , the inside tree by t_2 , and the full tree by t, we have

$$\psi(t) = \psi(t_1) \times \psi(t_2)$$

More generally, we have

$$\mu(A, i, j) = \sum_{t \in \mathcal{T}: (A, i, j) \in t} \psi(t)$$
(1)

$$= \sum_{t_1 \in \mathcal{O}(A,i,j)} \sum_{t_2 \in \mathcal{T}(A,i,j)} (\psi(t_1) \times \psi(t_2))$$
(2)

$$= \left(\sum_{t_1 \in \mathcal{O}(A,i,j)} \psi(t_1)\right) \times \left(\sum_{t_2 \in \mathcal{T}(A,i,j)} \psi(t_2)\right)$$
(3)

$$= \alpha(A, i, j) \times \beta(A, i, j) \tag{4}$$

Eq. 1 follows by definition. Eq. 2 follows because any tree t with non-terminal A spanning $x_i \ldots x_j$ can be decomposed into a pair (t_1, t_2) where $t_1 \in \mathcal{O}(A, i, j)$, and $t_2 \in \mathcal{T}(A, i, j)$. Eq. 3 follows by simple algebra. Finally, Eq. 4 follows by the definitions of $\alpha(A, i, j)$ and $\beta(A, i, j)$.

A similar argument can be used to justify computing

$$\mu(r) = \sum_{t \in \mathcal{T}: r \in t} \psi(t)$$

as

$$\mu(A,i) = \mu(A,i,i)$$

$$\mu(A \to B \ C, i, k, j) = \beta(A,i,j) \times \psi(A \to B \ C, i, k, j) \times \alpha(B,i,k) \times \alpha(C, k+1, j)$$

For brevity the details are omitted.

4 The EM Algorithm for PCFGs

We now describe a very important application of the inside-outside algorithm: EM estimation of PCFGs. The algorithm is given in figure 2.

The input to the algorithm is a set of training examples $x^{(i)}$ for $i = 1 \dots n$, and a CFG. Each training example is a sentence $x_1^{(i)} \dots x_{l_i}^{(i)}$, where l_i is the length of the sentence, and each $x_j^{(i)}$ is a word. The output from the algorithm is a parameter q(r) for each rule r in the CFG.

The algorithm starts with initial parameters $q^0(r)$ for each rule r (for example these parameters could be chosen to be random values). As is usual in EM-based algorithms, the algorithm defines a sequence of parameter settings $q^1, q^2, \ldots q^T$, where T is the number of iterations of the algorithm.

The parameters q^t at the t'th iteration are calculated as follows. In a first step, the inside-outside algorithm is used to calculate *expected counts* f(r) for each rule r in the PCFG, under the parameter values q^{t-1} . Once the expected counts are calculated, the new estimates are

$$q^{t}(A \to \gamma) = \frac{f(A \to \gamma)}{\sum_{A \to \gamma \in R} f(A \to \gamma)}$$

4.1 Calculation of the Expected Counts

The calculation of the expected counts f(r) for each rule r is the critical step: we now describe this in more detail. First, some definitions are needed. We define \mathcal{T}_i to be the set of all possible parse trees for the sentence $x^{(i)}$ under the CFG. We define

$$p(x,t;\underline{\theta})$$

to be the probability of sentence x paired with parse tree t under the PCFG with parameters $\underline{\theta}$ (the parameter vector $\underline{\theta}$ contains a parameter q(r) for each rule r in the CFG). For any parse tree t, for any context-free rule r, we define count(t, r) to be the number of times rule r is seen in the tree t. As is usual in PCFGs, we have

$$p(x, t; \underline{\theta}) = \prod_{r \in R} q(r)^{\operatorname{count}(t, r)}$$

Given a PCFG, and a sentence x, we can also calculate the conditional probablity

$$p(t|x;\underline{\theta}) = \frac{p(x,t;\underline{\theta})}{\sum_{t \in \mathcal{T}_i} p(x,t;\underline{\theta})}$$

of any $t \in \mathcal{T}_i$.

Given these definitions, we will show that the expected count $f^{t-1}(r)$ for any rule r, as calculated in the t'th iteration of the EM algorithm, is

$$f^{t-1}(r) = \sum_{i=1}^{n} \sum_{t \in \mathcal{T}_i} p(t|x^{(i)}; \underline{\theta}^{t-1}) \operatorname{count}(t, r)$$

Thus we sum over all training examples (i = 1 ... n), and for each training example, we sum over all parse trees $t \in T_i$ for that training example. For each parse tree t, we multiply the conditional probability $p(t|x^{(i)}; \underline{\theta}^{t-1})$ by the count count(t, r), which is the number of times rule r is seen in the tree t.

Consider calculating the expected count of any rule on a single training example; that is, calculating

$$\operatorname{count}(r) = \sum_{t \in \mathcal{T}_i} p(t|x^{(i)}; \underline{\theta}^{t-1}) \operatorname{count}(t, r)$$
(5)

Clearly, calculating this quantity by brute force (by explicitly enumerating all trees $t \in \mathcal{T}_i$) is not tractable. However, the count(r) quantities can be calculated efficiently, using the inside-outside algorithm. Figure 3 shows the algorithm. The algorithm takes as input a sentence $x_1 \dots x_n$, a CFG, and a parameter $q^{t-1}(r)$ for each rule r in the grammar. In a first step the μ and Z terms are calculated using the inside-outside algorithm. In a second step the counts are calculated based on the μ and Z terms. For example, for any rule of the form $A \to B C$, we have

$$\operatorname{count}(A \to B \ C) = \sum_{i,k,j} \frac{\mu(A \to B \ C, i, k, j)}{Z}$$
(6)

where μ and Z are terms calculated by the inside-outside algorithm, and the sum is over all i, k, j such that $1 \le i \le k < j \le n$.

The equivalence between the definitions in Eqs. 5 and 6 can be justified as follows. First, note that

$$\operatorname{count}(t,A \to B\ C) = \sum_{i,k,j} [[\langle A \to B\ C,i,k,j\rangle \in t]]$$

where $[[\langle A \rightarrow B \ C, i, k, j \rangle \in t]]$ is equal to 1 if the rule production $\langle A \rightarrow B \ C, i, k, j \rangle$ is seen in the tree, 0 otherwise.

Hence

$$\sum_{t \in \mathcal{T}_i} p(t|x^{(i)}; \underline{\theta}^{t-1}) \operatorname{count}(t, A \to B C)$$

$$= \sum_{t \in \mathcal{T}_i} p(t|x^{(i)}; \underline{\theta}^{t-1}) \sum_{i,k,j} [[\langle A \to B C, i, k, j \rangle \in t]]$$

$$= \sum_{i,k,j} \sum_{t \in \mathcal{T}_i} p(t|x^{(i)}; \underline{\theta}^{t-1}) [[\langle A \to B C, i, k, j \rangle \in t]]$$

$$= \sum_{i,k,j} \frac{\mu(A \to B C, i, k, j)}{Z}$$

The final equality follows because if we define the potential functions in the insideoutside algorithm as

$$\psi(A \to B \ C, i, k, j) = q^{t-1}(A \to B \ C)$$
$$\psi(A \to i) = q^{t-1}(A \to x_i)$$

then it can be verified that

$$\sum_{t \in \mathcal{T}_i} p(t|x^{(i)}; \underline{\theta}^{t-1})[[\langle A \to B \ C, i, k, j \rangle \in t]] = \frac{\mu(A \to B \ C, i, k, j)}{Z}$$

Inputs: Training examples $x^{(i)}$ for i = 1...n, where each $x^{(i)}$ is a sentence with words $x_j^{(i)}$ for $j \in \{1...l_i\}$ (l_i is the length of the *i*'th sentence). A CFG (N, Σ, R, S) .

Initialization: Choose some initial PCFG parameters $q^0(r)$ for each $r \in R$. (e.g., initialize the parameters to random values.) The initial parameters must satisfy the usual constraints that $q(r) \ge 0$, and for any $A \in N$, $\sum_{A \to \gamma \in R} q(A \to \gamma) = 1$.

Algorithm: For $t = 1 \dots T$

- For all r, set $f^{t-1}(r) = 0$
- For $i = 1 \dots n$
 - Use the algorithm in figure 3 with inputs equal to the sentence $x^{(i)}$, the CFG (N, Σ, R, S) , and parameters q^{t-1} , to calculate count(r) for each $r \in R$. Set

$$f^{t-1}(r) = f^{t-1}(r) + \text{count}(r)$$

for all $r \in R$.

• Re-estimate the parameters as

$$q^{t}(A \to \gamma) = \frac{f^{t-1}(A \to \gamma)}{\sum_{A \to \gamma \in R} f^{t-1}(A \to \gamma)}$$

for each rule $A \rightarrow \gamma \in R$.

Output: parameters $q^T(r)$ for all $r \in R$ of the PCFG.

Figure 2: The EM algorithm for PCFGs.

Inputs: A sentence $x_1 \dots x_n$, where each x_i is a word. A CFG (N, Σ, R, S) in Chomsky normal form. A parameter q(r) for each rule $r \in R$ in the CFG.

Algorithm:

• Run the inside-outside algorithm with inputs as follows: 1) the sentence $x_1 \dots x_n$; 2) the CFG (N, Σ, R, S) ; 3) potential functions

$$\psi(A \to B \ C, i, k, j) = q(A \to B \ C)$$

$$\psi(A \to i) = q(A \to x_i)$$

where $q(A \rightarrow x_i)$ is defined to be 0 if the rule $A \rightarrow x_i$ is not in the grammar

• For each rule of the form $A \to B C$,

$$\operatorname{count}(A \to B \ C) = \sum_{i,k,j} \frac{\mu(A \to B \ C, i,k,j)}{Z}$$

where μ and Z are terms calculated by the inside-outside algorithm, and the sum is over all i, k, j such that $1 \le i \le k < j \le n$.

• For each rule of the form $A \to x$,

$$\operatorname{count}(A \to x) = \sum_{i:x_i=x} \frac{\mu(A,i)}{Z}$$

Outputs: a count count(r) for each rule $r \in R$.

Figure 3: Calculating expected counts using the inside-outside algorithm.