Dual Decomposition for Parsing with Non-Projective Head Automata

Terry Koo, Alexander M. Rush, Michael Collins, David Sontag, and Tommi Jaakkola

The Cost of Model Complexity

We are always looking for better ways to model natural language.
Tradeoff: Richer models \Rightarrow Harder decoding
Added complexity is both computational and implementational.

The Cost of Model Complexity

We are always looking for better ways to model natural language.

Tradeoff: Richer models \Rightarrow Harder decoding

Added complexity is both computational and implementational.

Tasks with challenging decoding problems:

- Speech Recognition
- Sequence Modeling (e.g. extensions to HMM/CRF)
- Parsing
- Machine Translation

The Cost of Model Complexity

We are always looking for better ways to model natural language.
Tradeoff: Richer models \Rightarrow Harder decoding

Added complexity is both computational and implementational.

Tasks with challenging decoding problems:

- Speech Recognition
- Sequence Modeling (e.g. extensions to HMM/CRF)
- Parsing
- Machine Translation

$$
y^{*}=\arg \max _{y} f(y) \quad \text { Decoding }
$$

Non-Projective Dependency Parsing

Important problem in many languages.
Problem is NP-Hard for all but the simplest models.

Dual Decomposition

A classical technique for constructing decoding algorithms.
Solve complicated models

$$
y^{*}=\arg \max _{y} f(y)
$$

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

- Dynamic programming
- Minimum spanning tree
- Shortest path
- Min-Cut
- ...

A Dual Decomposition Algorithm for Non-Projective Dependency Parsing

Simple - Uses basic combinatorial algorithms

Efficient - Faster than previously proposed algorithms

Strong Guarantees - Gives a certificate of optimality when exact

Solves 98% of examples exactly, even though the problem is NP-Hard

Widely Applicable - Similar techniques extend to other problems

Roadmap

Algorithm

Experiments

Derivation

Non-Projective Dependency Parsing

- Starts at the root symbol *
- Each word has a exactly one parent word
- Produces a tree structure (no cycles)
- Dependencies can cross

Algorithm Outline

Arc-Factored Model

Sibling Model

Algorithm Outline

Arc-Factored Model

Dual Decomposition

Sibling Model

Arc-Factored

$f(y)=$

Arc-Factored

$$
f(y)=\operatorname{score}\left(\text { head }=*_{0}, \bmod =\operatorname{saw}_{2}\right)
$$

Arc-Factored

$$
f(y)=\operatorname{score}\left(\text { head }=*_{0}, \bmod =\operatorname{saw}_{2}\right)+\operatorname{score}\left(\text { saw }_{2}, \mathrm{John}_{1}\right)
$$

Arc-Factored

$f(y)=\operatorname{score}\left(\right.$ head $\left.=*_{0}, \bmod =\operatorname{saw}_{2}\right)+\operatorname{score}\left(\operatorname{saw}_{2}\right.$, John $\left._{1}\right)$

$$
+ \text { score }\left(\text { saw }_{2}, \text { movie }_{4}\right)
$$

Arc-Factored

$$
\begin{aligned}
f(y)= & \operatorname{score}\left(\text { head }=*_{0}, \bmod =\operatorname{saw}_{2}\right)+\operatorname{score}\left(\operatorname{saw}_{2}, \mathrm{John}_{1}\right) \\
& +\operatorname{score}\left(\mathrm{saw}_{2}, \operatorname{movie}_{4}\right)+\operatorname{score}\left(\mathrm{saw}_{2}, \text { today }_{5}\right)
\end{aligned}
$$

Arc-Factored

Arc-Factored

$$
\begin{aligned}
& f(y)=\operatorname{score}\left(\operatorname{head}=*_{0}, \bmod =\operatorname{saw}_{2}\right)+\operatorname{score}\left(\operatorname{saw}_{2}, \mathrm{John}_{1}\right) \\
& \\
& \quad+\operatorname{score}\left(\mathrm{saw}_{2}, \operatorname{movie}_{4}\right)+\operatorname{score}\left(\mathrm{saw}_{2}, \text { today }_{5}\right) \\
& \\
& \quad+\operatorname{score}\left(\operatorname{movie}_{4}, \mathrm{a}_{3}\right)+\ldots \\
& \text { e.g. } \operatorname{score}\left(*_{0}, \operatorname{saw}_{2}\right)=\log p\left(\operatorname{saw}_{2} \mid *_{0}\right) \quad \text { (generative model) }
\end{aligned}
$$

Arc-Factored

Arc-Factored

Sibling Models

$f(y)=$

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, mod $=$ saw $\left._{2}\right)$

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, $\left.\bmod =\operatorname{saw}_{2}\right)$

+ score $\left(\right.$ saw $_{2}$, NULL, John 1)

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, $\left.\bmod =\operatorname{saw}_{2}\right)$

+ score $\left(\right.$ saw $_{2}$, NULL $\left.^{2}, \mathrm{John}_{1}\right)+\operatorname{score}\left(\right.$ saw $_{2}$, NULL, movie $\left._{4}\right)$

Sibling Models

$$
\begin{aligned}
f(y)= & \operatorname{score}\left(\text { head }=*_{0}, \operatorname{prev}=\mathrm{NULL}, \bmod =\operatorname{saw}_{2}\right) \\
& +\operatorname{score}\left(\mathrm{saw}_{2}, \mathrm{NULL}^{2}, \mathrm{John}_{1}\right)+\operatorname{score}\left(\mathrm{saw}_{2}, \mathrm{NULL}^{2}, \operatorname{movie}_{4}\right) \\
& + \text { score }\left(\mathrm{saw}_{2}, \operatorname{movie}_{4}, \operatorname{today}_{5}\right)+\ldots
\end{aligned}
$$

Sibling Models

$$
\begin{aligned}
& f(y)=\operatorname{score}\left(\text { head }=*_{0}, \operatorname{prev}=\mathrm{NULL}, \bmod =\operatorname{saw}_{2}\right) \\
& \\
& \quad+\operatorname{score}\left(\mathrm{saw}_{2}, \mathrm{NULL}^{2}, \mathrm{John}_{1}\right)+\operatorname{score}\left(\mathrm{saw}_{2}, \mathrm{NULL}^{2}, \operatorname{movie}_{4}\right) \\
& \\
& \quad+\operatorname{score}\left(\mathrm{saw}_{2}, \operatorname{movie}_{4}, \operatorname{today}_{5}\right)+\ldots \\
& \text { e.g. } \operatorname{score}\left(\operatorname{saw}_{2}, \operatorname{movie}_{4}, \operatorname{today}_{5}\right)=\log p\left(\text { today }_{5} \mid \operatorname{saw}_{2}, \operatorname{movie}_{4}\right)
\end{aligned}
$$

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, $\left.\bmod =\operatorname{saw}_{2}\right)$

+ score $\left(\mathrm{saw}_{2}\right.$, NULL, $\left.\mathrm{John}_{1}\right)+$ score $\left(\mathrm{saw}_{2}\right.$, NULL, movie $\left._{4}\right)$
+ score $\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)+\ldots$
e.g. score $\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)=\log p\left(\right.$ today $_{5} \mid$ saw $_{2}$, movie $\left._{4}\right)$ or score $\left(\mathrm{saw}_{2}\right.$, movie $_{4}$, today $\left._{5}\right)=w \cdot \phi\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)$

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, $\left.\bmod =\operatorname{saw}_{2}\right)$

$$
\begin{aligned}
& + \text { score }\left(\mathrm{saw}_{2}, \text { NULL }^{2}, \mathrm{John}_{1}\right)+\text { score }\left(\text { saw }_{2}, \text { NULL } \text { movie }_{4}\right) \\
& + \text { score }\left(\mathrm{saw}_{2}, \text { movie }_{4}, \text { today }_{5}\right)+\ldots
\end{aligned}
$$

e.g. score $\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)=\log p\left(\right.$ today $_{5} \mid$ saw $_{2}$, movie $\left._{4}\right)$ or score $\left(\mathrm{saw}_{2}\right.$, movie $_{4}$, today $\left._{5}\right)=w \cdot \phi\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)$

$$
y^{*}=\arg \max _{y} f(y) \Leftarrow \text { NP-Hard }
$$

Thought Experiment: Individual Decoding

* $_{0}$ John $_{1} \quad$ saw $_{2} \quad$ a 3 movie 4 today ${ }_{5}$ that 6 he ${ }_{7}$ liked 8

Thought Experiment: Individual Decoding

$\operatorname{score}\left(\mathrm{saw}_{2}\right.$, NULL, $\left.^{2} \mathrm{John}_{1}\right)+\operatorname{score}\left(\mathrm{saw}_{2}\right.$, NULL, 2 movie $\left._{4}\right)$ + score $\left(\mathrm{saw}_{2}\right.$, movie $_{4}$, today $\left._{5}\right)$

Thought Experiment: Individual Decoding

$$
\left.\begin{array}{l}
\text { John }_{1} \quad \text { saw }_{2} \text { movie }_{4} \text { today }_{5} \text { that } \text { he }_{7} \text { liked } 88 \\
\\
\\
\\
\text { score }\left(\text { saw }_{2}, \text { NULL }_{3}, \text { John }_{1}\right)+\text { score }\left(\text { saw }_{2},\right. \text { NULL, movie } \\
4
\end{array}\right)
$$

score $\left(\right.$ saw $_{2}$, NULL 2, John $\left._{1}\right)+\operatorname{score}\left(\right.$ saw $_{2}$, NULL 2, that $\left._{6}\right)$

Thought Experiment: Individual Decoding

score $\left(\right.$ saw $_{2}$, NULL, John $\left.{ }_{1}\right)+\operatorname{score}\left(\right.$ saw $_{2}$, NULL 2, that $\left._{6}\right)$
score $\left(\right.$ saw $_{2}$, NULL $\left.^{2} \mathrm{a}_{3}\right)+\operatorname{score}\left(\mathrm{saw}_{2}, \mathrm{a}_{3}\right.$, he $\left._{7}\right)$

Thought Experiment: Individual Decoding

Thought Experiment: Individual Decoding

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

But we might violate some constraints.

Dual Decomposition Idea

	No Constraints
Arc- Factored Constraints	
Sibling	
Model	Tree Individual Decoding Spanning Tree

Dual Decomposition Idea

	No Constraints	Tree Constraints
ArcFactored		Minimum Spanning Tree
Sibling Model	Individual Decoding	Dual Decomposition

Dual Decomposition Structure

Goal $y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as $\operatorname{argmax} f(z)+g(y)$

$$
z \in \mathcal{Z}, y \in \mathcal{Y}
$$

such that $z=y$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as $\operatorname{argmax} f(z)+g(y)$

$$
\begin{aligned}
& z \in \mathcal{Z}, y \in \mathcal{Y} \\
& \text { All Possible }
\end{aligned}
$$

such that $z=y$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as argmax $f(z)+g(y)$

$$
\begin{aligned}
& z \in \mathcal{Z}, y \in \mathcal{Y} \\
& \text { All Possible } \\
& \text { such that } z=y
\end{aligned}
$$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as argmax $f(z)+g(y)$

$$
\begin{gathered}
z \in \mathcal{Z}, y \in \mathcal{Y} \\
\text { All Possible } \\
\text { such that } z=y
\end{gathered}
$$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as argmax $f(z)+g(y)$

$$
\begin{gathered}
z \in \mathcal{Z}, y \in \mathcal{Y} \\
\text { All Possible } \quad \text { Valid } \\
\text { such that } z=y
\end{gathered}
$$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as argmax $f(z)+g(y)$

such that $z=y$

Algorithm Sketch

Set penalty weights equal to 0 for all edges.
For $k=1$ to K

Algorithm Sketch

Set penalty weights equal to 0 for all edges.
For $k=1$ to K
$z^{(k)} \leftarrow$ Decode $(f(z)+$ penalty $)$ by Individual Decoding

Algorithm Sketch

Set penalty weights equal to 0 for all edges.
For $k=1$ to K
$z^{(k)} \leftarrow$ Decode ($f(z)+$ penalty $)$ by Individual Decoding
$y^{(k)} \leftarrow$ Decode $(g(y)-$ penalty $)$ by Minimum Spanning Tree

Algorithm Sketch

Set penalty weights equal to 0 for all edges.
For $k=1$ to K
$z^{(k)} \leftarrow$ Decode ($f(z)+$ penalty $)$ by Individual Decoding
$y^{(k)} \leftarrow$ Decode $(g(y)-$ penalty $)$ by Minimum Spanning Tree
If $y^{(k)}(i, j)=z^{(k)}(i, j)$ for all i, j Return $\left(y^{(k)}, z^{(k)}\right)$

Algorithm Sketch

Set penalty weights equal to 0 for all edges.
For $k=1$ to K
$z^{(k)} \leftarrow$ Decode ($f(z)+$ penalty $)$ by Individual Decoding
$y^{(k)} \leftarrow$ Decode $(g(y)-$ penalty $)$ by Minimum Spanning Tree
If $y^{(k)}(i, j)=z^{(k)}(i, j)$ for all $i, j \operatorname{Return}\left(y^{(k)}, z^{(k)}\right)$
Else Update penalty weights based on $y^{(k)}(i, j)-z^{(k)}(i, j)$

* $_{0}$ John $_{1} \quad$ saw $_{2} \quad$ a 3 movie $_{4}$ today $_{5}$ that $_{6}$ he $_{7}$ liked $_{8}$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

* $_{0}$ John $_{1}$ saw $_{2}$ a3 movie $_{4}$ today $_{5}$ that 6 he ${ }_{7}$ liked $_{8}$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$$
\begin{array}{lllll}
f(z) & \Leftarrow \text { Sibling Model } & g(y) & \Leftarrow & \text { Arc-Factored Model } \\
\mathcal{Z} & \Leftarrow & \text { No Constraints } & \mathcal{Y} & \Leftarrow \\
y(i, j)=1 & \text { if } y \text { Tree Constraints }
\end{array}
$$

Individual Decoding

$$
z^{*}=\arg \max _{z \in \mathbb{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

* $_{0} \mathrm{John}_{1}$ saw $_{2}$ a3 movie $_{4}$ today $_{5}$ that $_{6}$ he $_{7}$ liked $_{8}$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$$
\begin{array}{lllll}
f(z) & \Leftarrow \text { Sibling Model } & g(y) & \Leftarrow \text { Arc-Factored Model } \\
\mathcal{Z} & \Leftarrow \text { No Constraints } & \mathcal{Y} & \Leftarrow \text { Tree Constraints } \\
y(i, j)=1 & \text { if } y \text { contains dependency } i, j & & &
\end{array}
$$

Individual Decoding

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$$
\begin{array}{lllll}
f(z) & \Leftarrow \text { Sibling Model } & g(y) & \Leftarrow & \text { Arc-Factored Model } \\
\mathcal{Z} & \Leftarrow & \text { No Constraints } & \mathcal{Y} & \Leftarrow \\
y(i, j)=1 & \text { if } y \text { contains dependency } i, j & & &
\end{array}
$$

Individual Decoding

Penalties

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow Sibling Model	$g(y)$	\Leftarrow Arc-Factored Model	
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow
$y(i, j)=1$	if y Tree Constraints			

Individual Decoding

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Penalties

$u(i, j)=0$ for all i, j
Iteration 1
$u(8,1)$
$u(4,6)$
$u(2,6)$
$u(8,7)$

Minimum Spanning Tree

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow Sibling Model	$g(y)$	\Leftarrow Arc-Factored Model	
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow
$y(i, j)=1$	if y Tree Constraints			

Individual Decoding

Penalties

$$
\begin{equation*}
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& u(i, j)=0 \text { for all } i, j \\
& \begin{array}{lr}
\text { Iteration } 1 \\
\hline u(8,1) & -1 \\
u(4,6) & -1 \\
u(2,6) & 1 \\
u(8,7) & 1
\end{array}
\end{aligned}
$$

Minimum Spanning Tree

* $_{0} \mathrm{John}_{1} \mathrm{saw}_{2}$ a3 movie $_{4}$ today $_{5}$ that ${ }_{6}$ he ${ }_{7}$ liked $_{8}$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$$
\begin{array}{lllll}
f(z) & \Leftarrow \text { Sibling Model } & g(y) & \Leftarrow & \text { Arc-Factored Model } \\
\mathcal{Z} & \Leftarrow & \text { No Constraints } & \mathcal{Y} & \Leftarrow \\
y(i, j)=1 & \text { if } y \text { Tree Constraints }
\end{array}
$$

Individual Decoding

Penalties

$$
\begin{equation*}
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& u(i, j)=0 \text { for all } i, j \\
& \begin{array}{lr}
\text { Iteration } 1 \\
\hline u(8,1) & -1 \\
u(4,6) & -1 \\
u(2,6) & 1 \\
u(8,7) & 1
\end{array}
\end{aligned}
$$

Minimum Spanning Tree

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow Sibling Model	$g(y)$	\Leftarrow Arc-Factored Model	
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow
$y(i, j)=1$	if y Tree Constraints			

Individual Decoding

Penalties

$$
\begin{aligned}
& u(i, j)=0 \text { for all } i, j \\
& \begin{array}{lc}
\text { Iteration } 1 \\
\hline u(8,1) & -1 \\
u(4,6) & -1 \\
u(2,6) & 1
\end{array}
\end{aligned}
$$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow Sibling Model	$g(y)$	\Leftarrow	Arc-Factored Model
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow
$y(i, j)=1$	if	y Tree Contains dependency i, j		

Individual Decoding
Penalties

$$
\begin{array}{lr}
u(i, j)=0 \text { for all } i, j \\
\text { Iteration } 1 \\
\hline u(8,1) & -1 \\
u(4,6) & -1 \\
u(2,6) & 1 \\
u(8,7) & 1 \\
& \\
\text { Iteration } 2 & \\
\hline u(8,1) & -1 \\
u(4,6) & -2 \\
u(2,6) & 2 \\
u(8,7) & 1
\end{array}
$$

* $_{0}$ John $_{1}$ saw $_{2}$ a a movie $_{4}$ today $_{5}$ that $_{6}$ he $_{7}$ liked $_{8}$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$$
\begin{array}{llllll}
f(z) & \Leftarrow & \text { Sibling Model } & g(y) & \Leftarrow & \text { Arc-Factored Model } \\
\mathcal{Z} & \Leftarrow & \text { No Constraints } & \mathcal{Y} & \Leftarrow & \text { Tree Constraints } \\
y(i, j)=1 & \text { if } y \text { contains dependency } i, j & & &
\end{array}
$$

Individual Decoding

Penalties

$$
\begin{array}{lr}
u(i, j)=0 \text { for all } i, j \\
\text { Iteration } 1 \\
\hline u(8,1) & -1 \\
u(4,6) & -1 \\
u(2,6) & 1 \\
u(8,7) & 1 \\
& \\
\text { Iteration } 2 & \\
\hline u(8,1) & -1 \\
u(4,6) & -2 \\
u(2,6) & 2 \\
u(8,7) & 1
\end{array}
$$

* $_{0}$ John $_{1}$ saw $_{2}$ a a movie $_{4}$ today $_{5}$ that $_{6}$ he $_{7}$ liked $_{8}$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$$
\begin{array}{llllll}
f(z) & \Leftarrow & \text { Sibling Model } & g(y) & \Leftarrow & \text { Arc-Factored Model } \\
\mathcal{Z} & \Leftarrow & \text { No Constraints } & \mathcal{Y} & \Leftarrow & \text { Tree Constraints } \\
y(i, j)=1 & \text { if } y \text { contains dependency } i, j & & &
\end{array}
$$

Individual Decoding

Penalties

$u(i, j)=0$ for all i, j	
Iteration 1	
$u(8,1)$	-1
$u(4,6)$	-1
$u(2,6)$	1
$u(8,7)$	1
Iteration 2	
$u(8,1)$	-1
$u(4,6)$	-2
$u(2,6)$	2
$u(8,7)$	1

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow Sibling Model	$g(y)$	\Leftarrow Arc-Factored Model	
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow
$y(i, j)=1$	if y Tree Constraints			

Individual Decoding

Penalties

$$
\begin{array}{lr}
u(i, j)=0 \text { for all } i, j \\
\text { Iteration } 1 \\
\hline u(8,1) & -1 \\
u(4,6) & -1 \\
u(2,6) & 1 \\
u(8,7) & 1 \\
& \\
\text { Iteration } 2 & \\
\hline u(8,1) & -1 \\
u(4,6) & -2 \\
u(2,6) & 2 \\
u(8,7) & 1
\end{array}
$$

Converged

$$
y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)+g(y)
$$

Key

$f(z)$	\Leftarrow	Sibling Model	$g(y)$	\Leftarrow	Arc-Factored Model
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow	Tree Constraints
$y(i, j)=1$	if	y contains dependency i, j			

Guarantees

Theorem
If at any iteration $y^{(k)}=z^{(k)}$, then $\left(y^{(k)}, z^{(k)}\right)$ is the global optimum.

In experiments, we find the global optimum on 98% of examples.

Guarantees

Theorem

If at any iteration $y^{(k)}=z^{(k)}$, then $\left(y^{(k)}, z^{(k)}\right)$ is the global optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an approximate solution (more in the paper).

Extensions

- Grandparent Models

$$
f(y)=\ldots+\operatorname{score}\left(g p=*_{0} \text {, head }=\operatorname{saw}_{2}, \text { prev }=\text { movie }_{4}, \bmod =\text { today }_{5}\right)
$$

- Head Automata (Eisner, 2000)

Generalization of Sibling models

Allow arbitrary automata as local scoring function.

Roadmap

Algorithm

Experiments

Derivation

Experiments

Properties:

- Exactness
- Parsing Speed
- Parsing Accuracy
- Comparison to Individual Decoding
- Comparison to LP/ILP

Training:

- Averaged Perceptron (more details in paper)

Experiments on:

- CoNLL Datasets
- English Penn Treebank
- Czech Dependency Treebank

How often do we exactly solve the problem?

- Percentage of examples where the dual decomposition finds an exact solution.

Parsing Speed

- Number of sentences parsed per second
- Comparable to dynamic programming for projective parsing

Accuracy

	Arc-Factored	Prev Best	Grandparent
Dan	89.7	91.5	$\mathbf{9 1 . 8}$
Dut	82.3	85.6	$\mathbf{8 5 . 8}$
Por	90.7	92.1	$\mathbf{9 3 . 0}$
Slo	82.4	85.6	$\mathbf{8 6 . 2}$
Swe	88.9	90.6	$\mathbf{9 1 . 4}$
Tur	75.7	76.4	$\mathbf{7 7 . 6}$
Eng	90.1	-	$\mathbf{9 2 . 5}$
Cze	84.4	-	$\mathbf{8 7 . 3}$

Prev Best - Best reported results for CoNLL-X data set, includes

- Approximate search (McDonald and Pereira, 2006)
- Loop belief propagation (Smith and Eisner, 2008)
- (Integer) Linear Programming (Martins et al., 2009)

Comparison to Subproblems

F_{1} for dependency accuracy

Comparison to LP/ILP

Martins et al.(2009): Proposes two representations of non-projective dependency parsing as a linear programming relaxation as well as an exact ILP.

- LP (1)
- LP (2)
- ILP

Use an LP/ILP Solver for decoding
We compare:

- Accuracy
- Exactness
- Speed

Both LP and dual decomposition methods use the same model, features, and weights w.

Comparison to LP/ILP: Accuracy

- All decoding methods have comparable accuracy

Comparison to LP/ILP: Exactness and Speed

Percentage with exact solution

Sentences per second

Roadmap

Algorithm

Experiments

Derivation

Deriving the Algorithm

Goal:

$$
y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite:

$$
\begin{aligned}
& \arg \max _{z \in \mathcal{Z}, y \in \mathcal{Y}} f(z)+g(y) \\
& \text { s.t. } z(i, j)=y(i, j) \text { for all } i, j
\end{aligned}
$$

Lagrangian: $L(u, y, z)=f(z)+g(y)+\sum_{i, j} u(i, j)(z(i, j)-y(i, j))$

Deriving the Algorithm

Goal:

$$
y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite:

$$
\begin{aligned}
& \arg \max _{z \in \mathcal{Z}, y \in \mathcal{Y}} f(z)+g(y) \\
& \text { s.t. } z(i, j)=y(i, j) \text { for all } i, j
\end{aligned}
$$

Lagrangian: $L(u, y, z)=f(z)+g(y)+\sum_{i, j} u(i, j)(z(i, j)-y(i, j))$
The dual problem is to find $\min _{u} L(u)$ where

$$
\begin{aligned}
L(u)=\max _{y \in \mathcal{Y}, z \in \mathcal{Z}} L(u, y, z)= & \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right) \\
& +\max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
\end{aligned}
$$

Dual is an upper bound: $L(u) \geq f\left(z^{*}\right)+g\left(y^{*}\right)$ for any u

A Subgradient Algorithm for Minimizing $L(u)$

$$
L(u)=\max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)+\max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

$L(u)$ is convex, but not differentiable. A subgradient of $L(u)$ at u is a vector g_{u} such that for all v,

$$
L(v) \geq L(u)+g_{u} \cdot(v-u)
$$

Subgradient methods use updates $u^{\prime}=u-\alpha g_{u}$ In fact, for our $L(u), g_{u}(i, j)=z^{*}(i, j)-y^{*}(i, j)$

Related Work

- Methods that use general purpose linear programming or integer linear programming solvers (Martins et al. 2009; Riedel and Clarke 2006; Roth and Yih 2005)
- Dual decomposition/Lagrangian relaxation in combinatorial optimization (Dantzig and Wolfe, 1960; Held and Karp, 1970; Fisher 1981)
- Dual decomposition for inference in MRFs (Komodakis et al., 2007; Wainwright et al., 2005)
- Methods that incorporate combinatorial solvers within loopy belief propagation (Duchi et al. 2007; Smith and Eisner 2008)

Summary

$$
y^{*}=\arg \max _{y} f(y) \Leftarrow \text { NP-Hard }
$$

* $_{0}$ John $_{1} \quad$ saw $_{2}$ a ${ }_{3}$ movie $_{4}$ today $_{5}$ that $_{6}$ he $_{7}$ liked $_{8}$

Arc-Factored Model

Sibling Model

Summary

$$
y^{*}=\arg \max _{y} f(y) \Leftarrow \text { NP-Hard }
$$

* $_{0}$ John $_{1}$ saw $_{2}$ a ${ }_{3}$ movie $_{4}$ today $_{5}$ that $_{6}$ he $_{7}$ liked 8

Other Applications

- Dual decomposition can be applied to other decoding problems.
- Rush et al. (2010) focuses on integrated dynamic programming algorithms.
- Integrated Parsing and Tagging
- Integrated Constituency and Dependency Parsing

Parsing and Tagging

$$
y^{*}=\arg \max _{y} f(y) \Leftarrow \text { Slow }
$$

* $_{0}$ John $_{1} \quad$ saw $_{2} \quad$ a $3 ~$ movie $_{4}$ today ${ }_{5}$ that th $_{6}$ he $_{7}$ liked $_{8}$

HMM Model

CFG Model

Parsing and Tagging

$$
y^{*}=\arg \max _{y} f(y) \Leftarrow \text { Slow }
$$

* $_{0}$ John $_{1} \quad$ saw $_{2} \quad$ a 3 movie $_{4}$ today $_{5}$ that ${ }_{6}$ he $_{7}$ liked $_{8}$

Dual Decomposition

CFG Model

Dependency and Constituency

$$
y^{*}=\arg \max _{y} f(y) \Leftarrow \text { Slow }
$$

* $_{0}$ John $_{1}$ saw $_{2}$ a ${ }_{3}$ movie $_{4}$ today $_{5}$ that $_{6}$ he $_{7}$ liked $_{8}$

Dependency Model

Lexicalized CFG

Dependency and Constituency

$$
y^{*}=\arg \max _{y} f(y) \Leftarrow \text { Slow }
$$

* $_{0}$ John $_{1} \quad$ saw $_{2} \quad$ a3 movie $_{4}$ today $_{5}$ that ${ }_{6}$ he $_{7}$ liked $_{8}$

Dependency Model

Dual Decomposition

Lexicalized CFG

Future Directions

There is much more to explore around dual decomposition in NLP.

- Known Techniques
- Generalization to more than two models
- K-best decoding
- Approximate subgradient
- Heuristic for branch-and-bound type search
- Possible NLP Applications
- Machine Translation
- Speech Recognition
- "Loopy" Sequence Models
- Open Questions
- Can we speed up subalgorithms when running repeatedly?
- What are the trade-offs of different decompositions?
- Are there better methods for optimizing the dual?

Appendix

Training the Model

$f(y)=\ldots+\operatorname{score}\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)+\ldots$

- score $\left(\mathrm{saw}_{2}\right.$, movie $_{4}$, today $\left._{5}\right)=w \cdot \phi\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)$
- Weight vector w trained using Averaged perceptron.
- (More details in the paper.)

Early Stopping

Early Stopping

Caching

Caching speed

