
The EM algorithm for HMMs

Michael Collins

February 22, 2012

Maximum-Likelihood Estimation for Fully

Observed Data (Recap from earlier)

I We have fully observed data, xi,1 . . . xi,m, si,1 . . . si,m for
i = 1 . . . n. The likelihood function is

L(θ) =
n∑

i=1

log p(xi,1 . . . xi,m, si,1 . . . si,m; θ)

I Maximum-likelihood estimates of transition probabilities are

t(s′|s) =
∑n

i=1 count(i, s→ s′)∑n
i=1

∑
s′ count(i, s→ s′)

I Maximum-likelihood estimates of emission probabilities are

e(x|s) =
∑n

i=1 count(i, s x)∑n
i=1

∑
x count(i, s x)

Maximum-Likelihood Estimation for Partially

Observed Data

I We have partially observed data, xi,1 . . . xi,m for i = 1 . . . n.
Note we do not have state sequences. The likelihood function
is

L(θ) =
n∑

i=1

log
∑

s1...sm

p(xi,1 . . . xi,m, s1 . . . sm; θ)

I We can maximize this function using EM... (the algorithm will
converge to a local maximum of the likelihood function)

An Example

I Suppose we have an HMM with two states (k = 2) and 4
possible emissions (a, b, x, y) and our (partially observed)
training data consists of the following counts of 4 different
sequences (no other sequences are seen):

a x (100 times)
a y (100 times)
b x (100 times)
b y (100 times)

I What are the maximum-likelihood estimates for the HMM?

Forward and Backward Probabilities
I Define α[j, s] to be the sum of probabilities of all paths ending

in state s at position j in the sequence, for j = 1 . . .m and
s ∈ {1 . . . k}. More formally:

α[j, s] =
∑

s1...sj−1

[
t(s1)e(x1|s1)

(
j−1∏
k=2

t(sk|sk−1)e(xk|sk)

)
t(s|sj−1)e(xj |s)

]

I Define β[j, s] for s ∈ {1 . . . k} and j ∈ {1 . . . (m− 1)} to be
the sum of probabilities of all paths starting with state s at
position j and going to the end of the sequence. More
formally:

β[j, s] =
∑

sj+1...sm

t(sj+1|s)e(xj+1|sj+1)

 m∏
k=j+2

t(sk|sk−1)e(xk|sk)

Recursive Definitions of the Forward Probabilities

I Initialization: for s = 1 . . . k

α[1, s] = t(s)e(x1|s)

I For j = 2 . . .m:

α[j, s] =
∑

s′∈{1...k}

(α[j − 1, s′]× t(s|s′)× e(xj|s))

Recursive Definitions of the Backward Probabilities

I Initialization: for s = 1 . . . k

β[m, s] = 1

I For j = m− 1 . . . 1:

β[j, s] =
∑

s′∈{1...k}

(β[j + 1, s′]× t(s′|s)× e(xj+1|s′))

The Forward-Backward Algorithm

I Given these definitions:

p(x1 . . . xm, Sj = s; θ)

=
∑

s1...sm:sj=s

p(x1 . . . xm, s1 . . . sm; θ)

= α[j, s]× β[j, s]

I Note: we’ll assume the special definition that β[m, s] = 1 for
all s

The Forward-Backward Algorithm

I Given these definitions:

p(x1 . . . xm, Sj = s, Sj+1 = s′; θ)

=
∑

s1...sm:sj=s,sj+1=s′

p(x1 . . . xm, s1 . . . sm; θ)

= α[j, s]× t(s′|s)× e(xj+1|s′)× β[j + 1, s′]

I Note: we’ll assume the special definition that β[m, s] = 1 for
all s

Things we can Compute Using Forward-Backward

Probabilities

I The probability of any sequence:

p(x1 . . . xm; θ) =
∑

s1...sm

p(x1 . . . xm, s1 . . . sm; θ)

=
∑
s

α[m, s]

I The probability of any state transition:

p(x1 . . . xm, Sj = s, Sj+1 = s′; θ)

=
∑

s1...sm:sj=s,sj+1=s′

p(x1 . . . xm, s1 . . . sm; θ)

= α[j, s]× t(s′|s)× e(xj+1|s′)× β[j + 1, s′]

Things we can Compute Using Forward-Backward

Probabilities (continued)

I The conditional probability of any state transition:

p(Sj = s, Sj+1 = s′|x1 . . . xm; θ)

=
α[j, s]× t(s′|s)× e(xj+1|s′)× β[j + 1, s′]∑

s α[m, s]

I The conditional probability of any state at any position:

p(Sj = s|x1 . . . xm; θ) =
α[j, s]× β[j, s]∑

s α[m, s]

Things we can Compute Using Forward-Backward

Probabilities (continued)

I Define count(i, s→ s′; θ) to be the expected number of times
the transition s→ s′ is seen in the training example
xi,1, xi,2, . . . , xi,m, for parameters θ. Then

count(i, s→ s′; θ) =
m−1∑
j=1

p(Sj = s, Sj+1 = s′|xi,1 . . . xi,m; θ)

(We can compute p(Sj = s, Sj+1 = s′|xi,1 . . . xi,m; θ) using
the forward-backward probabilities, see previous slide)

Things we can Compute Using Forward-Backward

Probabilities (continued)

I For completeness, a formal definition of count(i, s→ s′; θ):

count(i, s→ s′; θ)

=
∑

s1...sm

p(s1 . . . sm|xi,1 . . . xi,m; θ)count(s→ s′, s1 . . . sm)

where count(s→ s′, s1 . . . sm) is the number of times the
transition s→ s′ is seen in the sequence s1 . . . sm

Things we can Compute Using Forward-Backward

Probabilities (continued)

I Define count(i, s z; θ) to be the expected number of times
the state s is paired with the emission z in the training
sequence xi,1, xi,2, . . . , xi,m, for parameters θ. Then

count(i, s z; θ) =
m∑
j=1

p(Sj = s|xi,1 . . . xi,m; θ)[[xi,j = z]]

(We can compute p(Sj = s|xi,1 . . . xi,m; θ) using the
forward-backward probabilities, see previous slides)

The EM Algorithm for HMMs
I Initialization: set initial parameters θ0 to some value

I For t = 1 . . . T :

I Use the forward-backward algorithm to compute all expected
counts of the form

count(i, s→ s′; θt−1) or count(i, s z; θt−1)

I Update the parameters based on the expected counts:

tt(s′|s) =
∑n

i=1 count(i, s→ s′; θt−1)∑n
i=1

∑
s′ count(i, s→ s′; θt−1)

et(x|s) =
∑n

i=1 count(i, s x; θt−1)∑n
i=1

∑
x count(i, s x; θt−1)

The Initial State Probabilities
I For simplicity I’ve omitted the estimates for the initial state

parameters t(s), but these are simple to derive in a similar way
to the transition and the emission parameters

I For completeness, the expected counts are:

count(i, s; θt−1) =
α[1, s]× β[1, s]∑

s α[m, s]

(the expected number of times state s is seen as the initial
state)

I The parameter updates are then

tt(s) =

∑n
i=1 count(i, s; θt−1)

n

