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Maximum-Likelihood Estimation for Fully
Observed Data (Recap from earlier)

» We have fully observed data, ;1 ... %;m, Si1- .. Sim for
1 =1...n. The likelihood function is

L(9) = Z log p(Ti1 -+ - Tismy Sit - - - Sim3 0)
i=1

» Maximum-likelihood estimates of transition probabilities are
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» Maximum-likelihood estimates of emission probabilities are
n .
S0, count(i, s ~ 1)
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Maximum-Likelihood Estimation for Partially
Observed Data

» We have partially observed data, ;... 2, fori =1...n.
Note we do not have state sequences. The likelihood function
is

» We can maximize this function using EM... (the algorithm will
converge to a local maximum of the likelihood function)



An Example

» Suppose we have an HMM with two states (k = 2) and 4
possible emissions (a, b, x, y) and our (partially observed)
training data consists of the following counts of 4 different
sequences (no other sequences are seen):
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» What are the maximume-likelihood estimates for the HMM?



Forward and Backward Probabilities

» Define aj, s] to be the sum of probabilities of all paths ending
in state s at position j in the sequence, for j =1...m and
s e {l...k}. More formally:

-1
alj. sl = ) [f(51)€($1|51) (Ht(5k|8k—1)€($k18k)> t(S\Sjl)e(l“j\S)]

81...85—1 k=2

» Define 5[j,s] for s {1...k}and j € {1...(m —1)} to be
the sum of probabilities of all paths starting with state s at
position j and going to the end of the sequence. More

formally:

Blisl= ) lt(8j+15)6($j+18j+1) ( 11 t(SkSkl)e(fﬂkSk))]

Sj4+1---Sm k=342



Recursive Definitions of the Forward Probabilities

» |nitialization: fors=1...k

all, s] = t(s)e(z1]s)

» For ) =2...m:

aljisl= D (alj =1, x t(s]s) x e(z;s))

s'e{l...k}



Recursive Definitions of the Backward Probabilities

» |nitialization: fors=1...k

Blm,s] =1

» Forj=m—-1...1:

Bl.sl= > (Bl + 18T x t(s']s) x e(w4a]s"))

s'e{l...k}



The Forward-Backward Algorithm

» Given these definitions:

p(x1... .2, S; = s5;0)

— Z P(x1 .. T, 51 S 0)

81...8m:8;=8

= alj,s] x Bj, 4]

» Note: we'll assume the special definition that S[m, s| = 1 for
all s



The Forward-Backward Algorithm

» Given these definitions:

plxy... Ty, S;=5,541=50)

_ 3 P(T1 . Ty, S1 -+ - S 0)

81...8m:8j=5,5;41=5'

= alj,s] x t(s']s) X e(zjpls’) x Blj +1, 5]

» Note: we'll assume the special definition that S[m, s| = 1 for
all s



Things we can Compute Using Forward-Backward
Probabilities

» The probability of any sequence:

p(zy...xm;0) = Zp(ml...mm,sl...sm;g)

S1...8m,

= Za[m, s

s

» The probability of any state transition:

p(zy ... 2, S;=8,541=550)

— Z p(l’l...IEm,Slw-Sm;Q)

81...8m:8j=8,5j11=5'

= afj, s] x t(s']s) X e(zja]s') x Blj +1,5]



Things we can Compute Using Forward-Backward
Probabilities (continued)

» The conditional probability of any state transition:
p(S;=s8,Sj11 =81 . 2pm; 0)

_ alj, s] x t(s'|s) x e(xj41|s") x Bl + 1,

2. alm, §]

» The conditional probability of any state at any position:

alj, s| x Bl s]

2.5 am, 8]

p(S; =slxy...xm;0) =



Things we can Compute Using Forward-Backward
Probabilities (continued)

» Define count(i, s — s';0) to be the expected number of times
the transition s — s’ is seen in the training example

Ti1,%i2,- .-, Tim, for parameters ¢. Then
m—1
— 0y _ _ :
count(i,s — §';0) = E p(S; =5,8j11 =58 |Ti1... Tim:0)
i=1

(We can compute p(S; = 5,541 = §'|wi1... T m; 0) using
the forward-backward probabilities, see previous slide)



Things we can Compute Using Forward-Backward
Probabilities (continued)

» For completeness, a formal definition of count(i, s — s';0):

count(i, s — s'; 0)

= Z P(S1.w Sm|Tin . Tim; O)count(s — s’ 51 . 8y,)

S1...8m,

where count(s — s, s1...sp,) is the number of times the
transition s — s’ is seen in the sequence s;...s,,



Things we can Compute Using Forward-Backward
Probabilities (continued)

» Define count(i, s ~» z;0) to be the expected number of times
the state s is paired with the emission z in the training

sequence T;1,T;2, - - ., Lim, for parameters §. Then
m
count(i, s ~ z;0) = Zp(sj = 5|Ti1 - Tim; 0) [0 = 2]]
j=1

(We can compute p(S; = s|z;1...%im;0) using the
forward-backward probabilities, see previous slides)



The EM Algorithm for HMMs

» Initialization: set initial parameters #° to some value
» Fort=1...1T"

» Use the forward-backward algorithm to compute all expected
counts of the form

count(i,s — s';0'"1) or count(i,s ~» z; 07 1)

» Update the parameters based on the expected counts:
S count(i,s — s'; 0" 1)

Z?:l ZS/ m(i, s — SI;Qt—l)

S count(i, s ~ x50 1)
Z?:l Zx Count(i, S~ x;Qt_l)

tt(s'|s) =
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The Initial State Probabilities

» For simplicity I've omitted the estimates for the initial state
parameters t(s), but these are simple to derive in a similar way
to the transition and the emission parameters

» For completeness, the expected counts are:

afl, s] x B[1, 5]
2. alm, 5]

(the expected number of times state s is seen as the initial
state)

count(i,s; 0" ") =

» The parameter updates are then

Z?:l Count(ia 55 Qt_l)

t'(s) = "




