The EM algorithm for HMMs

Michael Collins

February 22, 2012

Maximum-Likelihood Estimation for Fully Observed Data (Recap from earlier)

- We have fully observed data, $x_{i, 1} \ldots x_{i, m}, s_{i, 1} \ldots s_{i, m}$ for $i=1 \ldots n$. The likelihood function is

$$
L(\underline{\theta})=\sum_{i=1}^{n} \log p\left(x_{i, 1} \ldots x_{i, m}, s_{i, 1} \ldots s_{i, m} ; \underline{\theta}\right)
$$

- Maximum-likelihood estimates of transition probabilities are

$$
t\left(s^{\prime} \mid s\right)=\frac{\sum_{i=1}^{n} \operatorname{count}\left(i, s \rightarrow s^{\prime}\right)}{\sum_{i=1}^{n} \sum_{s^{\prime}} \operatorname{count}\left(i, s \rightarrow s^{\prime}\right)}
$$

- Maximum-likelihood estimates of emission probabilities are

$$
e(x \mid s)=\frac{\sum_{i=1}^{n} \operatorname{count}(i, s \rightsquigarrow x)}{\sum_{i=1}^{n} \sum_{x} \operatorname{count}(i, s \rightsquigarrow x)}
$$

Maximum-Likelihood Estimation for Partially Observed Data

- We have partially observed data, $x_{i, 1} \ldots x_{i, m}$ for $i=1 \ldots n$. Note we do not have state sequences. The likelihood function is

$$
L(\underline{\theta})=\sum_{i=1}^{n} \log \sum_{s_{1} \ldots s_{m}} p\left(x_{i, 1} \ldots x_{i, m}, s_{1} \ldots s_{m} ; \underline{\theta}\right)
$$

- We can maximize this function using EM... (the algorithm will converge to a local maximum of the likelihood function)

An Example

- Suppose we have an HMM with two states $(k=2)$ and 4 possible emissions (a, b, x, y) and our (partially observed) training data consists of the following counts of 4 different sequences (no other sequences are seen):

a	x	$(100$ times $)$
a	y	$(100$ times $)$
b	x	$(100$ times $)$
b	y	$(100$ times $)$

- What are the maximum-likelihood estimates for the HMM?

Forward and Backward Probabilities

- Define $\alpha[j, s]$ to be the sum of probabilities of all paths ending in state s at position j in the sequence, for $j=1 \ldots m$ and $s \in\{1 \ldots k\}$. More formally:
$\alpha[j, s]=\sum_{s_{1} \ldots s_{j-1}}\left[t\left(s_{1}\right) e\left(x_{1} \mid s_{1}\right)\left(\prod_{k=2}^{j-1} t\left(s_{k} \mid s_{k-1}\right) e\left(x_{k} \mid s_{k}\right)\right) t\left(s \mid s_{j-1}\right) e\left(x_{j} \mid s\right)\right]$
- Define $\beta[j, s]$ for $s \in\{1 \ldots k\}$ and $j \in\{1 \ldots(m-1)\}$ to be the sum of probabilities of all paths starting with state s at position j and going to the end of the sequence. More formally:

$$
\beta[j, s]=\sum_{s_{j+1} \ldots s_{m}}\left[t\left(s_{j+1} \mid s\right) e\left(x_{j+1} \mid s_{j+1}\right)\left(\prod_{k=j+2}^{m} t\left(s_{k} \mid s_{k-1}\right) e\left(x_{k} \mid s_{k}\right)\right)\right]
$$

Recursive Definitions of the Forward Probabilities

- Initialization: for $s=1 \ldots k$

$$
\alpha[1, s]=t(s) e\left(x_{1} \mid s\right)
$$

- For $j=2 \ldots m$:

$$
\alpha[j, s]=\sum_{s^{\prime} \in\{1 \ldots k\}}\left(\alpha\left[j-1, s^{\prime}\right] \times t\left(s \mid s^{\prime}\right) \times e\left(x_{j} \mid s\right)\right)
$$

Recursive Definitions of the Backward Probabilities

- Initialization: for $s=1 \ldots k$

$$
\beta[m, s]=1
$$

- For $j=m-1 \ldots 1$:

$$
\beta[j, s]=\sum_{s^{\prime} \in\{1 \ldots k\}}\left(\beta\left[j+1, s^{\prime}\right] \times t\left(s^{\prime} \mid s\right) \times e\left(x_{j+1} \mid s^{\prime}\right)\right)
$$

The Forward-Backward Algorithm

- Given these definitions:

$$
\begin{aligned}
& p\left(x_{1} \ldots x_{m}, S_{j}=s ; \underline{\theta}\right) \\
= & \sum_{s_{1} \ldots s_{m}: s_{j}=s} p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m} ; \underline{\theta}\right) \\
= & \alpha[j, s] \times \beta[j, s]
\end{aligned}
$$

- Note: we'll assume the special definition that $\beta[m, s]=1$ for all s

The Forward-Backward Algorithm

- Given these definitions:

$$
\begin{aligned}
& p\left(x_{1} \ldots x_{m}, S_{j}=s, S_{j+1}=s^{\prime} ; \underline{\theta}\right) \\
= & \sum_{s_{1} \ldots s_{m}: s_{j}=s, s_{j+1}=s^{\prime}} p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m} ; \underline{\theta}\right) \\
= & \alpha[j, s] \times t\left(s^{\prime} \mid s\right) \times e\left(x_{j+1} \mid s^{\prime}\right) \times \beta\left[j+1, s^{\prime}\right]
\end{aligned}
$$

- Note: we'll assume the special definition that $\beta[m, s]=1$ for all s

Things we can Compute Using Forward-Backward Probabilities

- The probability of any sequence:

$$
\begin{aligned}
p\left(x_{1} \ldots x_{m} ; \underline{\theta}\right) & =\sum_{s_{1} \ldots s_{m}} p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m} ; \underline{\theta}\right) \\
& =\sum_{s} \alpha[m, s]
\end{aligned}
$$

- The probability of any state transition:

$$
\begin{aligned}
& p\left(x_{1} \ldots x_{m}, S_{j}=s, S_{j+1}=s^{\prime} ; \underline{\theta}\right) \\
& =\sum_{s_{1} \ldots s_{m}: s_{j}=s, s_{j+1}=s^{\prime}} p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m} ; \underline{\theta}\right) \\
& =\alpha[j, s] \times t\left(s^{\prime} \mid s\right) \times e\left(x_{j+1} \mid s^{\prime}\right) \times \beta\left[j+1, s^{\prime}\right]
\end{aligned}
$$

Things we can Compute Using Forward-Backward Probabilities (continued)

- The conditional probability of any state transition:

$$
\begin{aligned}
& p\left(S_{j}=s, S_{j+1}=s^{\prime} \mid x_{1} \ldots x_{m} ; \underline{\theta}\right) \\
& =\frac{\alpha[j, s] \times t\left(s^{\prime} \mid s\right) \times e\left(x_{j+1} \mid s^{\prime}\right) \times \beta\left[j+1, s^{\prime}\right]}{\sum_{s} \alpha[m, s]}
\end{aligned}
$$

- The conditional probability of any state at any position:

$$
p\left(S_{j}=s \mid x_{1} \ldots x_{m} ; \underline{\theta}\right)=\frac{\alpha[j, s] \times \beta[j, s]}{\sum_{s} \alpha[m, s]}
$$

Things we can Compute Using Forward-Backward Probabilities (continued)

- Define $\overline{\operatorname{count}}\left(i, s \rightarrow s^{\prime} ; \underline{\theta}\right)$ to be the expected number of times the transition $s \rightarrow s^{\prime}$ is seen in the training example $x_{i, 1}, x_{i, 2}, \ldots, x_{i, m}$, for parameters $\underline{\theta}$. Then

$$
\overline{\operatorname{count}}\left(i, s \rightarrow s^{\prime} ; \underline{\theta}\right)=\sum_{j=1}^{m-1} p\left(S_{j}=s, S_{j+1}=s^{\prime} \mid x_{i, 1} \ldots x_{i, m} ; \underline{\theta}\right)
$$

(We can compute $p\left(S_{j}=s, S_{j+1}=s^{\prime} \mid x_{i, 1} \ldots x_{i, m} ; \underline{\theta}\right.$) using the forward-backward probabilities, see previous slide)

Things we can Compute Using Forward-Backward Probabilities (continued)

- For completeness, a formal definition of $\overline{\operatorname{count}}\left(i, s \rightarrow s^{\prime} ; \underline{\theta}\right)$:

$$
=\begin{aligned}
& \quad \overline{\operatorname{count}}\left(i, s \rightarrow s^{\prime} ; \underline{\theta}\right) \\
& \sum_{s_{1} \ldots s_{m}} p\left(s_{1} \ldots s_{m} \mid x_{i, 1} \ldots x_{i, m} ; \underline{\theta}\right) \operatorname{count}\left(s \rightarrow s^{\prime}, s_{1} \ldots s_{m}\right)
\end{aligned}
$$

where count $\left(s \rightarrow s^{\prime}, s_{1} \ldots s_{m}\right)$ is the number of times the transition $s \rightarrow s^{\prime}$ is seen in the sequence $s_{1} \ldots s_{m}$

Things we can Compute Using Forward-Backward Probabilities (continued)

- Define $\overline{\operatorname{count}}(i, s \rightsquigarrow z ; \underline{\theta})$ to be the expected number of times the state s is paired with the emission z in the training sequence $x_{i, 1}, x_{i, 2}, \ldots, x_{i, m}$, for parameters $\underline{\theta}$. Then

$$
\overline{\operatorname{count}}(i, s \rightsquigarrow z ; \underline{\theta})=\sum_{j=1}^{m} p\left(S_{j}=s \mid x_{i, 1} \ldots x_{i, m} ; \underline{\theta}\right)\left[\left[x_{i, j}=z\right]\right]
$$

(We can compute $p\left(S_{j}=s \mid x_{i, 1} \ldots x_{i, m} ; \underline{\theta}\right.$) using the forward-backward probabilities, see previous slides)

The EM Algorithm for HMMs

- Initialization: set initial parameters $\underline{\theta}^{0}$ to some value
- For $t=1 \ldots T$:
- Use the forward-backward algorithm to compute all expected counts of the form

$$
\overline{\operatorname{count}}\left(i, s \rightarrow s^{\prime} ; \underline{\theta}^{t-1}\right) \text { or } \overline{\operatorname{count}}\left(i, s \rightsquigarrow z ; \underline{\theta}^{t-1}\right)
$$

- Update the parameters based on the expected counts:

$$
\begin{aligned}
t^{t}\left(s^{\prime} \mid s\right) & =\frac{\sum_{i=1}^{n} \overline{\operatorname{count}}\left(i, s \rightarrow s^{\prime} ; \underline{\theta}^{t-1}\right)}{\sum_{i=1}^{n} \sum_{s^{\prime}} \overline{\operatorname{count}}\left(i, s \rightarrow s^{\prime} ; \underline{\theta}^{t-1}\right)} \\
e^{t}(x \mid s) & =\frac{\sum_{i=1}^{n} \overline{\operatorname{count}}\left(i, s \rightsquigarrow x ; \underline{\theta}^{t-1}\right)}{\sum_{i=1}^{n} \sum_{x} \overline{\operatorname{count}}\left(i, s \rightsquigarrow x ; \underline{\theta}^{t-1}\right)}
\end{aligned}
$$

The Initial State Probabilities

- For simplicity l've omitted the estimates for the initial state parameters $t(s)$, but these are simple to derive in a similar way to the transition and the emission parameters
- For completeness, the expected counts are:

$$
\overline{\operatorname{count}}\left(i, s ; \underline{\theta}^{t-1}\right)=\frac{\alpha[1, s] \times \beta[1, s]}{\sum_{s} \alpha[m, s]}
$$

(the expected number of times state s is seen as the initial state)

- The parameter updates are then

$$
t^{t}(s)=\frac{\sum_{i=1}^{n} \overline{\operatorname{count}}\left(i, s ; \underline{\theta}^{t-1}\right)}{n}
$$

