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Today's Lecture

» Gaussian mixture models, and the EM algorithm
» The general form of the EM algorithm; convergence properties

» The EM algorithm applied to the naive Bayes model



Gaussian Distributions: A Special Case

» If 3 is the identity matrix, then we have a simple case of the
Gaussian distribution, where the only parameter is p:

1 1
Nasn) = e (e ul?)

» Given data points z,, z,, ..., z,, the maximum-likelihood

) Eny

estimates for 1 maximize

L) = Zlog N (25 1)

Giving (again):



Gaussian Mixture Models (GMMs)

» Model form for a GMM with k mixture components:

» The parameter vector f contains the following parameters:

1. q(z) for z=1...k. We have ¢(z) > 0 for all z, and



Maximum-Likelihood Estimation for GMMs

> The maximum-likelihood estimates for ¢(z) and p_ maximize
the following function:

L(®) = Zlogp@z,@

= Zlogz _znu

» How do we find the ML estimates in this case?

» For an applet demonstrating ML estimation for GMMs, see
http://www.socr.ucla.edu/Applets.dir/MixtureEM.html



The EM Algorithm for GMMS

Initialization: Set ¢°(2) and p to some initial values
(e.g., random initial values)

Algorithm: Fort=1...T:

1 Fori=1...n,and z=1...k, calculate

¢ (2)N (g 1)
2. ¢ )N (@ )

0(2]i) = p(zlz;;07") =

2 Recalculate the parameters:

t Z?:l (z|i)z;

n —z n(z)
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Properties of the EM Algorithm

» The algorithm defines a sequence of parameter values
0°,6",....0"

» We'll show that for all ¢,

L(@) > L")

» The algorithm will (usually*) converge to a local maximum of
L(#), but it may get stuck in locally optimal solutions

» “usually*": technically, it may also get stuck in a saddle-point
of L(#), i.e., a point where the gradient is zero, but which is
not a local maximum



Initialization is Important
» EM can get stuck in local maxima: because of this, the initial
parameter values are important

» One approach: choose random initial values for the B,
parameters

» Another approach: choose K, parameters to be randomly
selected points from the training set

» Typically run the EM algorithm multiple times, pick the best
solution



A General Form of the EM Algorithm

» Goal: maximize

:ZIng( Zlogpr 2;0)
i=1

» The algorithm: Fort=1...T

0" = argmax Q(60,6")

where



The Relationship to Estimation with Fully
Observed Data

» Maximum-likelihood estimation with fully observed data:
training set is (z;, z;) for i = 1...n, maximize

225 /) log p(;, 2; )

=1 z=1

where §(z|i) = 1 if z = z;, and 0 otherwise

» Maximum-likelihood estimation with EM: training set is x, for
i=1...n. At each iteration, choose #' to maximize

QB0 ZZ& ) log p(z;, 2; 0)

i=1 z=1

where 3(=)i) = p(z|z;;6")



Proof of Convergence

» It can be shown (see next slides) that for any ¢, 0,
L(¢) — L(0) = Q(¢,0) — Q(0.0) + K(¢',0)

where

n k

K@, 0) = p(z|z;; Hlog%
€.9) ZI; (eli:0) p(zlz;;8')
» In addition, K(6',8) > 0 for all §', 0, hence

L0 — L(0"") > Q8,6 ") — Q@ .07 >0

(2nd inequality holds because §' = arg maxy Q(0, 6" "))



Proof of Convergence (Continued)

» We have
L(O) = L(0") > Q8,6 — Q@ ",07") >0
hence the likelihood is non-decreasing at each iteration of EM
» In addition it can be shown that
0@.0) - qe.o=o i T _,

i.e., we're at a stationary point of L. Hence
L(0") — L(#"") > 0 if "' is not a stationary point of L



Proof that
L(0) — L(0) = Q(¢,0) — Q(0.0) + K(¢',0)
(Follows by some simple algebra...)

n k n k

Lol
Zzp Z|x179 logp |$Z79 Zp Z|l’ 9 log p(mzvzag)

i=1 z=1 i=1 z=1 Zz 117(43 Z5 ‘9/)
n k

n k
=> " plalz;0)logp(z;, z:0) = > > plzlzy;0) logpr %)

i=1 z=1 i=1 z=1

=Q,0 ZZ}) z|z;;0) log p(z;; 0")

i=1 z=1

=Q0.0 Zlogpx )



Proof that
L(®) — L(0) = Q(¢,0) — Q(0,0) + K(¢',9)

We've shown that
n k
> plzlz;i0)logp(zla; ) = Q. 0) — L(E') (1)
i=1 z=1
It follows also that
n k
D) plzlz;0)log p(zla; 0) = Q(60,0) — L(B)  (2)
i=1 z=1

If we take (2) - (1) we get the desired result:

n k .
>0 3 plelai )10 FEEG — Q0.0) - L(8) - Q(0.0) + L)

=1 z=1
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Another Example: EM for Naive Bayes

» Assume each z € {0,1}?. The model form:

q;(x;]2)

N
Il
—

Eﬂw
Mjm

» Parameters of the model:

» q(z) forz=1...k
(constraints: ¢(z) >0, and ), q(z) =1)

» gj(z|z) for j=1...d, x € {0,1},and z=1...k
(constraints: ¢;(z|z) >0, and ) __ g;(x|z) =1)



Guess the optimal parameters...

» | have 5 training examples:

» | choose & = 2. What are the maximum-likelihood parameters
in this case?

» (An example of how this kind of data might arise: each vector
x represents a document. x; = 1 if the document contains
“Obama”, 0 otherwise. x5, = 1 iff document contains
“McCain”. z3 = 1 iff a document contains “Philadelphia”.
x4 = 1 iff a document contains “Tampa".)



A Warm-up: Maximum-Likelihood Estimates for
Fully Observed Data

» Training data (z,,z;) fori=1...n

» Maximume-likelihood estimates maximize

Zlogp x;, 230 ZZ& ) log p(z;, z;0)

=1 z=1

where §(z|i) = 1 if z = z;, 0 otherwise
» Solution:
Z(S a0 .’13‘ Zi:zi’j:m 5(’2’7’)
’ Z?:l 6(z[7)




The EM Algorithm for Naive Bayes

Initialization: Set ¢°(z) and ¢} (z|z) to some initial values
(e.g., random initial values)

Algorithm: Fort=1...T:

1 Fori=1...n,and z=1...k, calculate

¢ '(2) Hjl L 4 (wag]2)
> ¢ () [Ty ) (wigl2)

2 Recalculate the parameters:

DED
~ 2060 k) = S

0(2li) = p(zlz;;07") =




Clustering

» We've seen models of the form

0)=> aq(x)N(z

» After training a model using EM, we can assign each point in
q,Z,...2, to a different cluster:

% = argmaxp(z|z;0)

= argmax

Z q(2)N

= argmaxgq(z )N(w'u)



K-Means Clustering

» Goal: for a dataset z; ...z, try to find:

1. cluster labels z; ...z, where each z; € {1,2,...k}

2. cluster centers By by

» We will always have:
z; = argmin ||z, —gZH2
4

i.e., each point gets assigned to the cluster with the closest
center

» The quality of a clustering is measured as

J(Zl’ZQ’."’Zn’Hl"'Hk) = ZH@Z _/_'Lzz||2
i=1



The K-means Clustering Algorithm

Initialization: Set p” for 2 = 1...k to some initial values
(e.g., random initial values)

Algorithm: Fort=1...T"

1 t71||2

1 Fori=1...n, calculate 2/~' = argmin, ||z; — [

2 Recalculate the cluster centers:

L= S o)

where §(z]7) = 1 if 27! = z;, 0 otherwise

Output: cluster centers MT forz=1...k,

fori=1...n

cluster labels z = argmin, Hx _ ZHQ



Convergence Properties of K-means

v

Consider again our objective function (which we're aiming to
minimize):

(21522, s Zns fly oo ) = Z ||z; —/_iZi||2
i=1

v

Step 1 of k-means: minimizes J with respect to the z;
variables (keeping the p1_ variables fixed)

v

Step 2: minimizes J with respect to the K, variables
(keeping the z; variables fixed)

v

K-means will converge to a local minimum of J



