Naive Bayes and Gaussian models for
classification

Michael Collins

February 22, 2012



Today's Lecture

» Probabilistic models:

» Naive bayes

» Gaussian models



Classification using Perceptron, SVMs

» Input: training examples (z;,y;) for i = 1...n, where z, € R?
and y; € {—1,+1}

» Output: a parameter vector # that defines a function

f(z;0)

that maps points z to labels y € {—1,+1}



Naive Bayes

» Input: a training sample (z;,y;) for i = 1...n, where
z; € {_17 1}d and Yi € {_17+1}

» Output: a parameter vector 6 that defines a distribution
(i.e., a probability mass function (PMF))

p(z,y;0)
» pis a well-defined PMF, i.e.,

> p(z,y;0) =1 and for all z,y, p(z,y;6) >0
z,y



Using the Model for Classification

» The output of a naive bayes classifier is

flz) = argmyaxp(ylz;ﬁ)

B p(z,y;0)
= argmax ———————

v >, p(a,y;0)
= argmax p(z,y;0)
)



How do we Define p(z, y;6)?

» There are 2¢ possible values for z, and 2 possible values for 7,
giving 2971 possibilities in total



The Naive Bayes Assumption

» Define random variables Y, X, X5, ..., X;. Each sample
point is an input vector, with a label, defining values for Y

and X;... X,

» We'll make the following assumption:

P(Yzy,Xl :{L‘l,XQZZEg,...Xd:[Ed)

= P(Y:y)P(Xl:l’l,XQ:.CEQ,...Xd:ZL‘d‘Y:y)

= PY =y [ PX; ==Y =y)

J=1

Note: the first step is exact (by the chain rule). The second
step is an assumption, the naive bayes assumption



Parameters in a Naive Bayes Model

» The model form is as follows:

p(z,y; 0 qj(z5ly)

”E&

» The parameter vector # contains the following parameters:
» q(y) fory € {—1,+1}

» qj(zly) forj=1...d, y € {—1,+1}, and z € {-1,1}
» Constraints on these parameters:
q(+1) +q(-1) =1
and fory € {—1,+1}, for j =1...4,
¢;(+1y) +¢;(—1ly) =1



Maximum Likelihood Estimates

» Given a training sample (z,,y;) for i = 1...n, parameter
estimates can be defined as

>oiqllyi = vl

qly) = "

and
(ol — izl = T Ay = y]]
Bl = =5 =]

» Notation: [[7]] = 1 if the statement 7 is true, O otherwise. For
example, > " | [[y; = y]] is the number of times y; = y in the
training sample.



The Log-Likelihood Function, and ML Estimation

» The model form is as follows: p(z,y;0) = q(y) H;l:l q;(z;ly). Our
training data is (z;,y;) fori=1...n

> The likelihood of the training data under parameters 6 is

n

') = [[ p(z. vi:0)

=1

> The log-likelihood is
(9) log L/ Z Ing Ly vi; 0

» The maximum-likelihood estimates are

arg max L(0) = arg max L'(0)



Laplace Smoothing

» Define the smoothed estimates to be

a+ [y =x Ny = Y]
200+ 3 5[y = 9]

where a > 0 is some (typically small) constant, e.g., « = 1

qi(zly) =

» In practice, this can give a big improvement over
maximum-likelihood estimates.



Naive Bayes: Summary

» Input: a training sample (z;,y;) for i = 1...n, where
5, € {0,1} and y; € {1, +1}

» Output: a parameter vector 0 that defines a distribution
p(z,y;0). The vector § contains the ¢(y) and g;(x|y)
parameter estimates, which are estimated using
maximume-likelihood or laplace smoothing.

» On a new test example, the output of the classifier is

arg max p(z, y; )
Yy



Naive Bayes: Generalizations

» Generalizations: it's simple to generalize naive bayes to the
multi-class case where y € {1,2,... k}

» Generalizations: it's simple to generalize naive bayes to the
case where attributes can take more than 2 values, i.e., for all

j=1...d z;€{1,2,...,m;}



More Notes on Naive Bayes

» One potential advantage: Simplicity, and efficiency

» A second potential advantage: The method is well defined in
cases of missing attributes: training or test examples where
some x; values are not observed.

» An important thing to realise: naive bayes constructs a linear
classifier



Today's Lecture

» Probabilistic models:

» Naive bayes

» Gaussian models



Data with Continuous-Valued Attributes

» For naive bayes, we assumed x € {—1,+1}¢

» What probabilistic models can we use when z € R4?



The Multivariate Normal Distribution

v

The density (pdf) for a multivariate normal distribution where
xR s

N(z;p, X) = WGXP (—%@ - )Yz - M))

v

RS R? specifies the mean of the distribution

v

Y is a d x d matrix specifying the covariance of the
distribution. > must be symmetric and positive semi-definite

v

|| is the determinant of ¥



More about the Gaussian Distribution

» For a random variable X with pdf N(z; 4, %), the mean of the
distribution is yu:
EX]=p

» The covariance of the random variable is 3: for all 7, 5

E[(Xi — i) (X5 — py)] = X



A Probabilistic Model Based on Normal

Distributions

» Define
p(z,y;0) = q(y)N(z; p , %)

» The parameter vector 6 contains the following parameters:
> q(y) fory € {—1,+1}

>, € RY for y € {—1,+1}

» Y, a d X d positive semi-definite matrix



Applying the Model

» For a new test point z, the output of the classifier is

flz) =

arg max p(y]a; 0)
Yy

p(z,y;0)
arg max ———————

v >, p(a,y;0)
arg max p(z, y; 0)
Yy

arg max q(y)N(z; p,, X)



The Maximum-Likelihood Estimates

» Define our estimates as:

and
_ Zi:yz:y Li
S SN ]
and



Linear Decision Boundaries in the Model

» Because we've used a single parameter X, for the covariance
of both distributions, it can be shown that the decision
boundary is again a linear separator.

» Note: the decision boundary is the set of points z for which

pz, +1;0) = p(z, —1;0)



