
Naive Bayes and Gaussian models for

classification

Michael Collins

February 22, 2012

Today’s Lecture

I Probabilistic models:

I Naive bayes

I Gaussian models

Classification using Perceptron, SVMs

I Input: training examples (xi, yi) for i = 1 . . . n, where xi ∈ Rd

and yi ∈ {−1,+1}

I Output: a parameter vector θ that defines a function

f(x; θ)

that maps points x to labels y ∈ {−1,+1}

Naive Bayes

I Input: a training sample (xi, yi) for i = 1 . . . n, where
xi ∈ {−1, 1}d and yi ∈ {−1,+1}

I Output: a parameter vector θ that defines a distribution
(i.e., a probability mass function (PMF))

p(x, y; θ)

I p is a well-defined PMF, i.e.,∑
x,y

p(x, y; θ) = 1 and for all x, y, p(x, y; θ) ≥ 0

Using the Model for Classification

I The output of a naive bayes classifier is

f(x) = arg max
y
p(y|x; θ)

= arg max
y

p(x, y; θ)∑
y p(x, y; θ)

= arg max
y
p(x, y; θ)

How do we Define p(x, y; θ)?

I There are 2d possible values for x, and 2 possible values for y,
giving 2d+1 possibilities in total

The Naive Bayes Assumption
I Define random variables Y,X1, X2, . . . , Xd. Each sample

point is an input vector, with a label, defining values for Y
and X1 . . . Xd.

I We’ll make the following assumption:

P (Y = y,X1 = x1, X2 = x2, . . . Xd = xd)

= P (Y = y)P (X1 = x1, X2 = x2, . . . Xd = xd |Y = y)

= P (Y = y)
d∏
j=1

P (Xj = xj |Y = y)

Note: the first step is exact (by the chain rule). The second
step is an assumption, the naive bayes assumption

Parameters in a Naive Bayes Model
I The model form is as follows:

p(x, y; θ) = q(y)
d∏
j=1

qj(xj|y)

I The parameter vector θ contains the following parameters:
I q(y) for y ∈ {−1,+1}

I qj(x|y) for j = 1 . . . d, y ∈ {−1,+1}, and x ∈ {−1, 1}

I Constraints on these parameters:

q(+1) + q(−1) = 1

and for y ∈ {−1,+1}, for j = 1 . . . d,

qj(+1|y) + qj(−1|y) = 1

Maximum Likelihood Estimates

I Given a training sample (xi, yi) for i = 1 . . . n, parameter
estimates can be defined as

q(y) =

∑n
i=1[[yi = y]]

n

and

qj(x|y) =

∑n
i=1[[xi,j = x ∧ yi = y]]∑n

i=1[[yi = y]]

I Notation: [[π]] = 1 if the statement π is true, 0 otherwise. For
example,

∑n
i=1[[yi = y]] is the number of times yi = y in the

training sample.

The Log-Likelihood Function, and ML Estimation

I The model form is as follows: p(x, y; θ) = q(y)
∏d
j=1 qj(xj |y). Our

training data is (xi, yi) for i = 1 . . . n

I The likelihood of the training data under parameters θ is

L′(θ) =

n∏
i=1

p(xi, yi; θ)

I The log-likelihood is

L(θ) = logL′(θ) =

n∑
i=1

log p(xi, yi; θ)

I The maximum-likelihood estimates are

arg max
θ
L(θ) = arg max

θ
L′(θ)

Laplace Smoothing

I Define the smoothed estimates to be

qj(x|y) =
α +

∑n
i=1[[xi,j = x ∧ yi = y]]

2α +
∑n

i=1[[yi = y]]

where α > 0 is some (typically small) constant, e.g., α = 1

I In practice, this can give a big improvement over
maximum-likelihood estimates.

Naive Bayes: Summary

I Input: a training sample (xi, yi) for i = 1 . . . n, where
xi ∈ {0, 1}d and yi ∈ {−1,+1}

I Output: a parameter vector θ that defines a distribution
p(x, y; θ). The vector θ contains the q(y) and qj(x|y)
parameter estimates, which are estimated using
maximum-likelihood or laplace smoothing.

I On a new test example, the output of the classifier is

arg max
y
p(x, y; θ)

Naive Bayes: Generalizations

I Generalizations: it’s simple to generalize naive bayes to the
multi-class case where y ∈ {1, 2, . . . , k}

I Generalizations: it’s simple to generalize naive bayes to the
case where attributes can take more than 2 values, i.e., for all
j = 1 . . . d, xj ∈ {1, 2, . . . ,mj}

More Notes on Naive Bayes

I One potential advantage: Simplicity, and efficiency

I A second potential advantage: The method is well defined in
cases of missing attributes: training or test examples where
some xj values are not observed.

I An important thing to realise: naive bayes constructs a linear
classifier

Today’s Lecture

I Probabilistic models:

I Naive bayes

I Gaussian models

Data with Continuous-Valued Attributes

I For naive bayes, we assumed x ∈ {−1,+1}d

I What probabilistic models can we use when x ∈ Rd?

The Multivariate Normal Distribution

I The density (pdf) for a multivariate normal distribution where
x ∈ Rd is

N(x;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)

I µ ∈ Rd specifies the mean of the distribution

I Σ is a d× d matrix specifying the covariance of the
distribution. Σ must be symmetric and positive semi-definite

I |Σ| is the determinant of Σ

More about the Gaussian Distribution

I For a random variable X with pdf N(x;µ,Σ), the mean of the
distribution is µ:

E[X] = µ

I The covariance of the random variable is Σ: for all i, j

E[(Xi − µi)(Xj − µj)] = Σi,j

A Probabilistic Model Based on Normal

Distributions

I Define
p(x, y; θ) = q(y)N(x;µ

y
,Σ)

I The parameter vector θ contains the following parameters:

I q(y) for y ∈ {−1,+1}

I µ
y
∈ Rd for y ∈ {−1,+1}

I Σ, a d× d positive semi-definite matrix

Applying the Model

I For a new test point x, the output of the classifier is

f(x) = arg max
y
p(y|x; θ)

= arg max
y

p(x, y; θ)∑
y p(x, y; θ)

= arg max
y
p(x, y; θ)

= arg max
y
q(y)N(x;µ

y
,Σ)

The Maximum-Likelihood Estimates

I Define our estimates as:

q(y) =

∑n
i=1[[yi = y]]

n

and

µ
y

=

∑
i:yi=y

xi∑n
i=1[[yi = y]]

and

Σ =
1

n

n∑
i=1

(xi − µyi)(xi − µyi)
T

Linear Decision Boundaries in the Model

I Because we’ve used a single parameter Σ, for the covariance
of both distributions, it can be shown that the decision
boundary is again a linear separator.

I Note: the decision boundary is the set of points x for which

p(x,+1; θ) = p(x,−1; θ)

