Lecture 4, COMS E6998-3:

Disciminative Context-Free Parsing

Michael Collins

February 9, 2011

Context-Free Grammars

» A context-free grammar (CFG) in Chomsky normal form is a
tuple (V, 3, R, S) where:

» V is a finite set of non-terminal symbols
» > is a finite set of terminal symbols
» R is a set of rules: each rule either takes the form

X =Y Z

where XY, Z €V, or

where X e Vand w € X
S € V is the start symbol

v

Context-Free Parse Trees
S

N

NP VP
N N
D N vy NP

|

| | N
the dOg saw D N

|
the cat

» Each ruleis a tuple (X — Y Z,i,k,j) where X — Y Z is a rule,
non-terminal X spans words i ... 7 inclusive, Y spans words ¢...k
inclusive, Z spans words (k4 1)...j inclusive.

» Rules in this example:
S—NPVP1,25
NP — D N,1,1,2
VP —V NP,3,3,5
NP — D N,4,4,5

Ambiguity

There are many sources of ambiguity: PP attachment,
part-of-speech ambiguity, coordination, etc. etc.

Notation

v

Assume z is a sequence of words x; ...z,

v

A context-free parse is a vector y

First, define the index set Z to be the set of all possible rules:

v

IT=AX—=>Y Zikj: X—->YZeR1<i<k<j<m}

v

Then y is a vector of values y(r) for all 7 € Z. y(r) = 1 if the
structure contains the rule (1), y(r) = 0 otherwise.

We use) to refer to the set of all possible well-formed vectors
Y

\4

Feature Vectors for Rules

» ¢(z, X =Y Z,i,k,j) is a feature vector representing rule
X =Y Zikj

for sentence =
» Example features:
» lIdentity of the rule X - Y Z
» lIdentity of the rule X — Y Z in conjunction with words at

the boundary points i, k, or j
> etc. etc.

CRFs for Discriminative Context-Free Parsing

> We use ®(z,y) € R? to refer to a feature vector for an entire
context-free parse tree y

» We then build a log-linear model, very similar to a CRF

exp (w- ®(z,y))
yey P (w- 2(z,y))

p(ylz; w) = >

» How do we define ®(z,y)? Answer:

D(z.y) =Y ylr)g(z,r)

rel

where ¢(xz, 1) is the feature vector for rule r

Decoding
» The decoding problem: find

exp (w- ®(z,y))

arg I;leaﬁip(ylz;w) = arg gleaf Zg/Gy exp (w - D(z, Q,))
= argmax exp (w-2(z,y))
= arg r;1€a§< w-P(z,y)
= argmax w- ZE; y(r)o(z, r
= argmax Z;y w- P(z,7))

» This problem can be solved using dynamic programming, in
O(m?) time, where m is the length of the sentence

Decoding using the CKY Algorithm
» For convenience, define

0(r) =w- ¢(z,7)

The decoding problem is to find
0
arg r;eajc Z y(r)0(r)

» Dynamic programming algorithm: define
[X, 1, 7]

for X € V, 1 <7 <75 <m to be the highest score for any
subtree rooted in non-terminal X, spanning words i ...
inclusive

Decoding using the CKY Algorithm (continued)

» Initialization: fori =1...m, X € V, define n[X,4,i] = 0 if
X — x; is a valid rule, —oco otherwise. (Recall that z; is the
i'th word in the input sentence.)

» Recursive case: for X € V, for 1 <i < j <n,

X—Y Z€ER,
kefi..j—1}

» The highest scoring tree has score 7[5, 1, m]. Backpointers
can be used to recover the identity of the highest scoring tree.

Parameter Estimation

» To estimate the parameters, we assume we have a set of n
labeled examples {(z’,y")}i=,. Each z' is an input sequence
xi... 2", each y is a context free tree

» We then proceed in exactly the same way as for CRFs
» The regularized log-likelihood function is

- . A
= > logp(y'lzw) — Sl

i=1

» The parameter estimates are

. A
w* = arg max Zlogp 2t w) ||| |”

weRd - 2

The gradient of L(w) can again be calculated efficiently, using
dynamic programming algorithms

