
Lecture 4, COMS E6998-3:

Disciminative Context-Free Parsing

Michael Collins

February 9, 2011

Context-Free Grammars

◮ A context-free grammar (CFG) in Chomsky normal form is a
tuple (V, Σ, R, S) where:

◮ V is a finite set of non-terminal symbols
◮ Σ is a finite set of terminal symbols
◮ R is a set of rules: each rule either takes the form

X → Y Z

where X,Y,Z ∈ V , or

X → w

where X ∈ V and w ∈ Σ
◮ S ∈ V is the start symbol

Context-Free Parse Trees
S

NP

D

the

N

dog

VP

V

saw

NP

D

the

N

cat

◮ Each rule is a tuple 〈X → Y Z, i, k, j〉 where X → Y Z is a rule,

non-terminal X spans words i . . . j inclusive, Y spans words i . . . k

inclusive, Z spans words (k + 1) . . . j inclusive.

◮ Rules in this example:

S → NP V P, 1, 2, 5

NP → D N, 1, 1, 2

V P → V NP, 3, 3, 5

NP → D N, 4, 4, 5

Ambiguity

There are many sources of ambiguity: PP attachment,
part-of-speech ambiguity, coordination, etc. etc.

Notation

◮ Assume x is a sequence of words x1 . . . xm

◮ A context-free parse is a vector y

◮ First, define the index set I to be the set of all possible rules:

I = {X → Y Z, i, k, j : X → Y Z ∈ R, 1 ≤ i ≤ k < j ≤ m}

◮ Then y is a vector of values y(r) for all r ∈ I. y(r) = 1 if the
structure contains the rule (r), y(r) = 0 otherwise.

◮ We use Y to refer to the set of all possible well-formed vectors
y

Feature Vectors for Rules

◮ φ(x, X → Y Z, i, k, j) is a feature vector representing rule

X → Y Z, i, k, j

for sentence x

◮ Example features:

◮ Identity of the rule X → Y Z
◮ Identity of the rule X → Y Z in conjunction with words at

the boundary points i, k, or j
◮ etc. etc.

CRFs for Discriminative Context-Free Parsing

◮ We use Φ(x, y) ∈ R
d to refer to a feature vector for an entire

context-free parse tree y

◮ We then build a log-linear model, very similar to a CRF

p(y|x; w) =
exp

(

w · Φ(x, y)
)

∑

y′∈Y exp
(

w · Φ(x, y′)
)

◮ How do we define Φ(x, y)? Answer:

Φ(x, y) =
∑

r∈I

y(r)φ(x, r)

where φ(x, r) is the feature vector for rule r

Decoding
◮ The decoding problem: find

arg max
y∈Y

p(y|x; w) = arg max
y∈Y

exp
(

w · Φ(x, y)
)

∑

y′∈Y exp
(

w · Φ(x, y′)
)

= arg max
y∈Y

exp
(

w · Φ(x, y)
)

= arg max
y∈Y

w · Φ(x, y)

= arg max
y∈Y

w ·
∑

r∈I

y(r)φ(x, r)

= arg max
y∈Y

∑

r∈I

y(r)
(

w · φ(x, r)
)

◮ This problem can be solved using dynamic programming, in
O(m3) time, where m is the length of the sentence

Decoding using the CKY Algorithm

◮ For convenience, define

θ(r) = w · φ(x, r)

The decoding problem is to find

arg max
y∈Y

∑

r∈I

y(r)θ(r)

◮ Dynamic programming algorithm: define

π[X, i, j]

for X ∈ V , 1 ≤ i ≤ j ≤ m to be the highest score for any
subtree rooted in non-terminal X, spanning words i . . . j

inclusive

Decoding using the CKY Algorithm (continued)

◮ Initialization: for i = 1 . . .m, X ∈ V , define π[X, i, i] = 0 if
X → xi is a valid rule, −∞ otherwise. (Recall that xi is the
i’th word in the input sentence.)

◮ Recursive case: for X ∈ V , for 1 ≤ i < j ≤ n,

π[X, i, j] = max
X→Y Z∈R,

k∈{i...j−1}

(θ(X → Y Z, i, k, j) + π[Y, i, k] + π[Z, k + 1, j])

◮ The highest scoring tree has score π[S, 1, m]. Backpointers
can be used to recover the identity of the highest scoring tree.

Parameter Estimation
◮ To estimate the parameters, we assume we have a set of n

labeled examples, {(xi, yi)}n
i=1

. Each xi is an input sequence
xi

1
. . . xi

m, each yi is a context-free tree

◮ We then proceed in exactly the same way as for CRFs

◮ The regularized log-likelihood function is

L(w) =

n
∑

i=1

log p(yi|xi; w) −
λ

2
||w||2

◮ The parameter estimates are

w∗ = arg max
w∈Rd

n
∑

i=1

log p(yi|xi; w) −
λ

2
||w||2

The gradient of L(w) can again be calculated efficiently, using
dynamic programming algorithms

