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Conditional Random Fields (CRFs)

» Notation: for convenience we'll use z to refer to the sequence
of input words, x; ...x,,, and s to refer to a sequence of
possible states, sy ...s,,. The set of possible states is S. We
use ) to refer to the set of all possible state sequences (we
have || = |S|™).

» We're again going to build a model of

p(s1-.Smlx1. .. xm) = p(s|x)



CRFs

» We use ®(z, s) € R? to refer to a feature vector for an entire
state sequence

» We then build a giant log-linear model,

exp (w - D(z, s))
D geyexp(w- (z, )

» The model is “giant” in the sense that: 1) the space of
possible values for s, i.e., ), is huge. 2) The normalization
constant (denominator in the above expression) involves a sum
over a huge number of possibilities (i.e., all members of ).

p(s|z;w) =



CRFs (continued)

exp (w - ®(z, s))
> sey exp (w- P(z, ¢))

p(s|z;w) =

» How do we define ®(z,s)? Answer:

m
E Jl‘j,S] 178J

where ¢(z, j,s;-1,5;) are the same as the feature vectors used
in MEMMs.



Decoding with CRFs

» The decoding problem: find

exp (w - ®(z, s))

arg rgeaxp( slz;w) = arg max > ey exp (w- Dz, 5))
= N (b
argmax  exp (w- D(z,s))
_ )
argmax w ®(z, )

s€y

m
= argmax w- Z¢$J>Sy 1,55)

sey

m
= argmax Zw o(z, J,55-1, 55)

» Again, we can use the Viterbi algorithm...



The Viterbi Algorithm for CRFs

» Initialization: for s € S
ﬂ-[la 8] =w- ?(£7 17 50, 8)
where sq is a special “initial” state.
» Forj=2...m,s=1...k:
. _ . 1 / . . /

wljys) = max [x[j — 1, 5] + - 8z, j, ', 5)]
» We then have

max Z;w <02, ], 851, 55) = maxw[m, s]

i

» The algorithm runs in O(mk?) time. As before (see HMM

lecture slides), we can use backpointers to recover the most
likely sequence of states.



Parameter Estimation in CRFs

» To estimate the parameters, we assume we have a set of n
labeled examples, {(z',s")}1~,. Each z' is an input sequence

% % 1 % i
xy...x,,, each s’ is a state sequence s ...s),.

v

We then proceed in exactly the same way as for regular
log-linear models

v

The regularized log-likelihood function is
- i A 2
L(w) = > logp(s'|z; w) — 5]l
i=1
» Our parameter estimates are

n . A
= > logp(s'|z';w) — 5w
w' = arg max 3 og p(s'|z; w) — 3 |l

v

We find the optimal parameters using gradient-based methods



The Structured Perceptron
» Input: labeled examples, {(z%, s%)} .
» Initialization: w =0
» Fort=1...T, fori=1...n

» Use the Viterbi algorithm to calculate
m

s€y sey

s* = argmax w-®(z',s) = arg max w-(z,J,5j-1,55)
7=1

» Updates:
w = w+ o s) - (', s%)
_|_

m 4 4 m
ZQ(Lj; S;’—lu 3;) - 29(2737 8;—17 S;k)

» Return w



The Structured Perceptron with Averaging

» Input: labeled examples, {(z%, s%)}™ .
Initialization: w =0, w, =0

» Fort=1...T,fori=1...n:

» Use the Viterbi algorithm to calculate

m
s* = argmax w-®(z',s) = arg max Zw- (z,7,85-1,55)

s€y T se€y < -
7=1
» Updates:
w = w+d@s') - (', s)
m m
= M"FZ@(Q:?])S] 1,8;)—ZQ(£,j,S;_1,S;)
7j=1 7j=1
w(l = w(l—’—w

» Return w,/nT



Convergence of the Structured Perceptron

» Definition: The training set {(z°, s')}, is separable with
margin 0 > 0, if there exists some parameter vector w such
that:

L lw|* =1
2. Foralli=1...n, forall s1...s, such that s; # 33'- for some
Js

|k

(z',s") —w- ®(z’,5) > 6

w .

» Theorem: if a training set is separable with margin ¢, the
structured perceptron makes at most
R2
52
mistakes before convergence, where R is related to the norm
of the feature vectors ®(z', 5)



