
Lecture 4, COMS E6998-3:

The Structured Perceptron

Michael Collins

February 9, 2011



Conditional Random Fields (CRFs)

◮ Notation: for convenience we’ll use x to refer to the sequence
of input words, x1 . . . xm, and s to refer to a sequence of
possible states, s1 . . . sm. The set of possible states is S. We
use Y to refer to the set of all possible state sequences (we
have |Y| = |S|m).

◮ We’re again going to build a model of

p(s1 . . . sm|x1 . . . xm) = p(s|x)



CRFs

◮ We use Φ(x, s) ∈ R
d to refer to a feature vector for an entire

state sequence

◮ We then build a giant log-linear model,

p(s|x; w) =
exp (w · Φ(x, s))

∑

s′∈Y
exp (w · Φ(x, s′))

◮ The model is “giant” in the sense that: 1) the space of
possible values for s, i.e., Y , is huge. 2) The normalization
constant (denominator in the above expression) involves a sum
over a huge number of possibilities (i.e., all members of Y).



CRFs (continued)

p(s|x; w) =
exp (w · Φ(x, s))

∑

s′∈Y exp (w · Φ(x, s′))

◮ How do we define Φ(x, s)? Answer:

Φ(x, s) =
m

∑

j=1

φ(x, j, sj−1, sj)

where φ(x, j, sj−1, sj) are the same as the feature vectors used
in MEMMs.



Decoding with CRFs

◮ The decoding problem: find

arg max
s∈Y

p(s|x; w) = arg max
s∈Y

exp (w · Φ(x, s))
∑

s′∈Y exp (w · Φ(x, s′))

= arg max
s∈Y

exp (w · Φ(x, s))

= arg max
s∈Y

w · Φ(x, s)

= arg max
s∈Y

w ·
m

∑

j=1

φ(x, j, sj−1, sj)

= arg max
s∈Y

m
∑

j=1

w · φ(x, j, sj−1, sj)

◮ Again, we can use the Viterbi algorithm...



The Viterbi Algorithm for CRFs

◮ Initialization: for s ∈ S

π[1, s] = w · φ(x, 1, s0, s)

where s0 is a special “initial” state.

◮ For j = 2 . . .m, s = 1 . . . k:

π[j, s] = max
s′∈S

[

π[j − 1, s′] + w · φ(x, j, s′, s)
]

◮ We then have

max
s1...sm

m
∑

j=1

w · φ(x, j, sj−1, sj) = max
s

π[m, s]

◮ The algorithm runs in O(mk2) time. As before (see HMM
lecture slides), we can use backpointers to recover the most
likely sequence of states.



Parameter Estimation in CRFs
◮ To estimate the parameters, we assume we have a set of n

labeled examples, {(xi, si)}n
i=1

. Each xi is an input sequence
xi

1
. . . xi

m, each si is a state sequence si
1
. . . si

m.

◮ We then proceed in exactly the same way as for regular
log-linear models

◮ The regularized log-likelihood function is

L(w) =

n
∑

i=1

log p(si|xi; w) −
λ

2
||w||2

◮ Our parameter estimates are

w∗ = arg max
w∈Rd

n
∑

i=1

log p(si|xi; w) −
λ

2
||w||2

◮ We find the optimal parameters using gradient-based methods



The Structured Perceptron
◮ Input: labeled examples, {(xi, si)}n

i=1
.

◮ Initialization: w = 0

◮ For t = 1 . . . T , for i = 1 . . . n:

◮ Use the Viterbi algorithm to calculate

s∗ = arg max
s∈Y

w·Φ(xi, s) = arg max
s∈Y

m
∑

j=1

w·φ(x, j, sj−1, sj)

◮ Updates:

w = w + Φ(xi, si) − Φ(xi, s∗)

= w +

m
∑

j=1

φ(x, j, si
j−1, s

i
j) −

m
∑

j=1

φ(x, j, s∗j−1, s
∗
j )

◮ Return w



The Structured Perceptron with Averaging
◮ Input: labeled examples, {(xi, si)}n

i=1
.

Initialization: w = 0, wa = 0

◮ For t = 1 . . . T , for i = 1 . . . n:

◮ Use the Viterbi algorithm to calculate

s∗ = arg max
s∈Y

w·Φ(xi, s) = arg max
s∈Y

m
∑

j=1

w·φ(x, j, sj−1, sj)

◮ Updates:

w = w + Φ(xi, si) − Φ(xi, s∗)

= w +
m

∑

j=1

φ(x, j, si
j−1

, si
j) −

m
∑

j=1

φ(x, j, s∗j−1
, s∗j)

wa = wa + w

◮ Return wa/nT



Convergence of the Structured Perceptron
◮ Definition: The training set {(xi, si)}n

i=1
is separable with

margin δ > 0, if there exists some parameter vector w such
that:

1. ||w||2 = 1
2. For all i = 1 . . . n, for all s1 . . . sm such that sj 6= si

j for some

j,
w · Φ(xi, si) − w · Φ(xi, s) ≥ δ

◮ Theorem: if a training set is separable with margin δ, the
structured perceptron makes at most

R2

δ2

mistakes before convergence, where R is related to the norm
of the feature vectors Φ(xi, s)


