Unlabeled Dependency Parses

root John saw a movie

» root is a special root symbol

» Each dependency is a pair (j, k) where j index of a head word,
k is the index of a modifier word. In the figures, we represent
a dependency (j, k) by a directed edge from word j to word k

» Dependencies in the above example are (0,2), (2,1), (2,4)
and (4, 3). (We take 0 to be the root symbol.)

Conditions on Dependency Structures

root John saw a movie that he liked today

» The dependency arcs form a directed tree, with the root
symbol at the root of the tree.

» There are no “crossing dependencies”.
Dependency structures with no crossing dependencies are
sometimes referred to as projective structures.

All Dependency Parses for John saw Mary

root John saw Mary

a/\ root John saw  Mary
root John saw Mary
root John saw  Mary root John saw  Mary

Notation for Dependency Structures

» Assume z is a sequence of words x; ...z,
» A dependency structure is a vector y
» First, define the index set 7 to be the set of all possible
dependencies. For example, for m = 3,
7 =A(0,1),(0,2),(0,3),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)}
» Then y is a vector of values y(j, k) for all (j,k) € Z.
y(j, k) = 1 if the structure contains the dependency (j, k),
y(j,k) = 0 otherwise.
» We use ) to refer to the set of all possible well-formed vectors
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Feature Vectors for Dependencies

> ¢(x,j, k) is a feature vector representing dependency (j, k) for
sentence &

» Example features:

Identity of the words x; and .

The part-of-speech tags for words z; and .
The distance between z; and xy,
Words/tags that surround z; and xy,

etc. etc.
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Decoding
» The decoding problem: find
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» This problem can be solved using dynamic programming, in
O(m?) time, where m is the length of the sentence

CRFs for Discriminative Dependency Parsing

» We use &(z,y) € R to refer to a feature vector for an entire
dependency structure y

» We then build a log-linear model, very similar to a CRF
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» How do we define ®(z,y)? Answer:
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where ¢(z, j, k) is the feature vector for dependency (j, k)

Parameter Estimation

» To estimate the parameters, we assume we have a set of n
labeled examples, {(z*,y')}-,. Each 2’ is an input sequence
r ...z, each y' is a dependency structure (i.e., y'(j, k) =1
if the i'th structure contains a dependency (7, k)).

» We then proceed in exactly the same way as for CRFs
» The regularized log-likelihood function is
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» The parameter estimates are
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Finding the Maximum-Likelihood Estimates

» We'll again use gradient-based optimization methods to find
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» How can we compute the derivatives? As before,
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» The first term is easily computed, because
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» The second term involves a sum over ), and because of this
looks nasty...

Non-Projective Dependency Parsing
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* John saw a movie yesterday that he liked

» We can also consider non-projective dependency parses, where
crossing dependencies are allowed

» Define ), to be the set of all non-projective dependency
parses

» Each dependency parse y € ), is a vector of values y(j, k)
for all (j,k) € Z. y(j, k) = 1 if the structure contains the
dependency (j, k), y(j, k) = 0 otherwise.

Calculating Derivatives using Dynamic
Programming

» We now consider how to compute the second term:
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(for the full derivation see the notes)

» For a given 4, all ¢‘(j, k) terms can be computed simultaneously in
O(m?) time using dynamic programming.

An Example from Czech

N\ 7 = P

i\
root O to nové vétSinou nemd ani zdjem a taky na to véSinou nemd  penize

He is mostly not even interested in the new things and in most cases, he has no money for it either.

(figure taken from McDonald et al, 2005)




CRFs for Non-Projective Structures

» We use ®(z,y) € R? to refer to a feature vector for an entire
dependency structure y

» We then build a log-linear model, very similar to a CRF

exp (w - ®(z,y))
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» How do we define ®(x,y)? Answer:

plylz; w) =
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where ¢(z, j, k) is the feature vector for dependency (j, k)

Only change from projective parsing: we've replaced the set of
projective parses ), with the set of non-projective parses, V,,

Decoding in Non-Projective Parsing Models:
the Chu-Liu-Edmonds Algorithm
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(figure and example from McDonald et al, 2005)

» Goal is to find the highest scoring directed spanning tree

Decoding in Non-Projective Models

» The decoding problem: find

arg max T;w) = arg max
gyeynpp(w_ ) ggeynp > ey €XP (Q-Q(g,g’))
= argmax exp(w- P(x,
gmax exp (w- 2(z,y))
= arg max w-P(x,
gyE.)/np - _(_ g)
= argmax w- Y y(j, K)oz 4, k)
yeynp
(4.k)€T
= argmax > y(j k) (w- o(z,j, k)
" (k)er

Only change from projective parsing: we've replaced the set of
projective parses ), with the set of non-projective parses, J,,

Step 1
» For each word, find the highest scoring incoming edge:

root

John 30 Mary

(figure from McDonald et al 2005)

» If the result of this step is a tree, we have the highest scoring
spanning tree

» If not, we have at least one cycle. Next step is to pick a cycle,
and contract the cycle




The Result of Contracting the Cycle
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» We merge John and saw (the words in the cycle) into a single
node ¢

> The weight of the edge from ¢ to Mary is 30 (because the weight
from John to Mary is 3, and from saw to Mary is 30: we take the
highest score)

» See McDonald et al 2005 (posted on the class website, under
lectures) for how the weights from root to ¢ and Mary to ¢ are
calculated

» Having created the new graph, we then recurse (return to step 1)

Efficiency

» A naive implementation takes O(n?) time (n is the number of
nodes in the graph, i.e., the number of words in the input
sentence)

» An improved implementation takes O(n?) time

Step 1 (again)

» For each word, find the highest scoring incoming edge:

( John’ - Mary
-~

» If the result of this step is a tree, we have the highest scoring
spanning tree

» This time we have a tree, and we're done (if not, we would
repeat step 2 again)

» Retracing the steps taken in contracting the cycle allows us to
recover the highest scoring tree:

root
10
saw
30 30
John Mary

Estimating the Parameters

» Again, we can choose the parameters that maximize

L(w) =) logp(y'la’;w) — 5| |w||”
i=1

where {(z*,y")}/_, is the training set

» The gradients can again be calculated efficiently (for example,
see Koo, Globerson, Carreras, and Collins, EMNLP 2007)




