
Unlabeled Dependency Parses

root John saw a movie

I
root is a special root symbol

I Each dependency is a pair (j, k) where j index of a head word,
k is the index of a modifier word. In the figures, we represent
a dependency (j, k) by a directed edge from word j to word k

I Dependencies in the above example are (0, 2), (2, 1), (2, 4)

and (4, 3). (We take 0 to be the root symbol.)

All Dependency Parses for John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

Conditions on Dependency Structures

saw a movieJohnroot he liked todaythat

I The dependency arcs form a directed tree, with the root

symbol at the root of the tree.

I There are no “crossing dependencies”.
Dependency structures with no crossing dependencies are
sometimes referred to as projective structures.

Notation for Dependency Structures

I Assume x is a sequence of words x1 . . . xm

I A dependency structure is a vector y

I First, define the index set I to be the set of all possible
dependencies. For example, for m = 3,

I = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}

I Then y is a vector of values y(j, k) for all (j, k) 2 I.
y(j, k) = 1 if the structure contains the dependency (j, k),
y(j, k) = 0 otherwise.

I We use Y to refer to the set of all possible well-formed vectors
y

Feature Vectors for Dependencies

I �(x, j, k) is a feature vector representing dependency (j, k) for
sentence x

I Example features:

I Identity of the words xj and xk
I The part-of-speech tags for words xj and xk
I The distance between xj and xk
I Words/tags that surround xj and xk
I etc. etc.

CRFs for Discriminative Dependency Parsing

I We use �(x, y) 2 Rd to refer to a feature vector for an entire

dependency structure y

I We then build a log-linear model, very similar to a CRF

p(y|x; w) =

exp

�
w · �(x, y)

�
P

y02Y exp

�
w · �(x, y0

)

�

I How do we define �(x, y)? Answer:

�(x, y) =

X

(j,k)2I

y(j, k)�(x, j, k)

where �(x, j, k) is the feature vector for dependency (j, k)

Decoding
I The decoding problem: find

arg max

y2Y
p(y|x; w) = arg max

y2Y

exp

�
w · �(x, y)

�
P

y02Y exp

�
w · �(x, y0

)

�

= arg max

y2Y
exp

�
w · �(x, y)

�

= arg max

y2Y
w · �(x, y)

= arg max

y2Y
w ·

X

(j,k)2I

y(j, k)�(x, j, k)

= arg max

s2Y

X

(j,k)2I

y(j, k)

�
w · �(x, j, k)

�

I This problem can be solved using dynamic programming, in
O(m3

) time, where m is the length of the sentence

Parameter Estimation

I To estimate the parameters, we assume we have a set of n
labeled examples, {(xi, yi

)}n
i=1. Each xi is an input sequence

xi
1 . . . xi

m, each yi is a dependency structure (i.e., yi
(j, k) = 1

if the i’th structure contains a dependency (j, k)).

I We then proceed in exactly the same way as for CRFs

I The regularized log-likelihood function is

L(w) =

nX

i=1

log p(yi|xi
; w)� �

2

||w||2

I The parameter estimates are

w⇤
= arg max

w2Rd

nX

i=1

log p(yi|xi
; w)� �

2

||w||2

Finding the Maximum-Likelihood Estimates

I We’ll again use gradient-based optimization methods to find
w⇤

I How can we compute the derivatives? As before,

@

@wl
L(w) =

X

i

�l(xi, yi)�
X

i

X

y2Y
p(y|xi;w)�l(xi, y)� �wl

I The first term is easily computed, because

X

i

�l(x
i, yi

) =

X

i

X

(j,k)2I

yi
(j, k)�l(x

i, j, k)

I The second term involves a sum over Y , and because of this
looks nasty...

Calculating Derivatives using Dynamic

Programming

I We now consider how to compute the second term:
X

y2Y
p(y|xi;w)�l(xi, y) =

X

y2Y
p(y|xi;w)

X

(j,k)2I

y(j, k)�l(xi, j, k)

=
X

(j,k)2I

qi(j, k)�l(xi, j, k)

where
qi(j, k) =

X

y2Y:y(j,k)=1

p(y|xi;w)

(for the full derivation see the notes)

I For a given i, all qi(j, k) terms can be computed simultaneously in
O(m3) time using dynamic programming.

Non-Projective Dependency Parsing

* John saw a movie yesterday that he liked

I We can also consider non-projective dependency parses, where
crossing dependencies are allowed

I Define Ynp to be the set of all non-projective dependency
parses

I Each dependency parse y 2 Ynp is a vector of values y(j, k)

for all (j, k) 2 I. y(j, k) = 1 if the structure contains the
dependency (j, k), y(j, k) = 0 otherwise.

An Example from Czech

root John saw a dog yesterday which was a Yorkshire Terrier

root O to nové většinou nemá ani zájem a taky na to většinou nemá penı́ze

He is mostly not even interested in the new things and in most cases, he has no money for it either.

Figure 2: Non-projective dependency trees in English and Czech.

grammatical relations, allowing non-projective de-

pendencies that we need to represent and parse ef-

ficiently. A non-projective example from the Czech

Prague Dependency Treebank (Hajič et al., 2001) is

also shown in Figure 2.

Most previous dependency parsing models have

focused on projective trees, including the work

of Eisner (1996), Collins et al. (1999), Yamada and

Matsumoto (2003), Nivre and Scholz (2004), and

McDonald et al. (2005). These systems have shown

that accurate projective dependency parsers can be

automatically learned from parsed data. However,

non-projective analyses have recently attracted some

interest, not only for languages with freer word order

but also for English. In particular, Wang and Harper

(2004) describe a broad coverage non-projective

parser for English based on a hand-constructed con-

straint dependency grammar rich in lexical and syn-

tactic information. Nivre and Nilsson (2005) pre-

sented a parsing model that allows for the introduc-

tion of non-projective edges into dependency trees

through learned edge transformations within their

memory-based parser. They test this system on

Czech and show improved accuracy relative to a pro-

jective parser. Our approach differs from those ear-

lier efforts in searching optimally and efficiently the

full space of non-projective trees.

The main idea of our method is that dependency

parsing can be formalized as the search for a maxi-

mum spanning tree in a directed graph. This formal-

ization generalizes standard projective parsing mod-

els based on the Eisner algorithm (Eisner, 1996) to

yield efficient O(n2) exact parsing methods for non-
projective languages like Czech. Using this span-

ning tree representation, we extend the work of Mc-

Donald et al. (2005) on online large-margin discrim-

inative training methods to non-projective depen-

dencies.

The present work is related to that of Hirakawa

(2001) who, like us, reduces the problem of depen-

dency parsing to spanning tree search. However, his

parsing method uses a branch and bound algorithm

that is exponential in the worst case, even though

it appears to perform reasonably in limited experi-

ments. Furthermore, his work does not adequately

address learning or measure parsing accuracy on

held-out data.

Section 2 describes an edge-based factorization

of dependency trees and uses it to equate depen-

dency parsing to the problem of finding maximum

spanning trees in directed graphs. Section 3 out-

lines the online large-margin learning framework

used to train our dependency parsers. Finally, in

Section 4 we present parsing results for Czech. The

trees in Figure 1 and Figure 2 are untyped, that

is, edges are not partitioned into types representing

additional syntactic information such as grammati-

cal function. We study untyped dependency trees

mainly, but edge types can be added with simple ex-

tensions to the methods discussed here.

2 Dependency Parsing and Spanning Trees

2.1 Edge Based Factorization

In what follows, x = x1 · · · xn represents a generic

input sentence, and y represents a generic depen-

dency tree for sentence x. Seeing y as the set of tree
edges, we write (i, j) ∈ y if there is a dependency
in y from word xi to word xj .

In this paper we follow a common method of fac-

toring the score of a dependency tree as the sum of

the scores of all edges in the tree. In particular, we

define the score of an edge to be the dot product be-

524

(figure taken from McDonald et al, 2005)

CRFs for Non-Projective Structures

I We use �(x, y) 2 Rd to refer to a feature vector for an entire

dependency structure y

I We then build a log-linear model, very similar to a CRF

p(y|x; w) =

exp

�
w · �(x, y)

�
P

y02Ynp
exp

�
w · �(x, y0

)

�

I How do we define �(x, y)? Answer:

�(x, y) =

X

(j,k)2I

y(j, k)�(x, j, k)

where �(x, j, k) is the feature vector for dependency (j, k)

Only change from projective parsing: we’ve replaced the set of
projective parses Y , with the set of non-projective parses, Ynp

Decoding in Non-Projective Models

I The decoding problem: find

arg max

y2Ynp

p(y|x; w) = arg max

y2Ynp

exp

�
w · �(x, y)

�
P

y02Y exp

�
w · �(x, y0

)

�

= arg max

y2Y
exp

�
w · �(x, y)

�

= arg max

y2Ynp

w · �(x, y)

= arg max

y2Ynp

w ·
X

(j,k)2I

y(j, k)�(x, j, k)

= arg max

s2Ynp

X

(j,k)2I

y(j, k)

�
w · �(x, j, k)

�

Only change from projective parsing: we’ve replaced the set of
projective parses Y , with the set of non-projective parses, Ynp

Decoding in Non-Projective Parsing Models:

the Chu-Liu-Edmonds Algorithm

Tarjan (1977) gives an efficient implementation of

the algorithm withO(n2) time complexity for dense
graphs, which is what we need here.

To find the highest scoring non-projective tree for

a sentence, x, we simply construct the graph Gx

and run it through the Chu-Liu-Edmonds algorithm.

The resulting spanning tree is the best non-projective

dependency tree. We illustrate here the application

of the Chu-Liu-Edmonds algorithm to dependency

parsing on the simple example x = John saw Mary,

with directed graph representation Gx,

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each

word, the highest scoring incoming edge
root

saw

John Mary30

3020

If the result were a tree, it would have to be the

maximum spanning tree. However, in this case we

have a cycle, so we will contract it into a single node

and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of

vertices John and saw. The edge from wjs to Mary

is 30 since that is the highest scoring edge from any

vertex in wjs. The edge from root into wjs is set to

40 since this represents the score of the best span-

ning tree originating from root and including only

the vertices in wjs. The same leads to the edge

from Mary to wjs. The fundamental property of the

Chu-Liu-Edmonds algorithm is that an MST in this

graph can be transformed into an MST in the orig-

inal graph (Leonidas, 2003). Thus, we recursively

call the algorithm on this graph. Note that we need

to keep track of the real endpoints of the edges into

and out of wjs for reconstruction later. Running the

algorithm, we must find the best incoming edge to

all words

root

saw

John Mary

40

30

wjs

This is a tree and thus the MST of this graph. We

now need to go up a level and reconstruct the graph.

The edge from wjs to Mary originally was from the

word saw, so we include that edge. Furthermore, the

edge from root towjs represented a tree from root to

saw to John, so we include all those edges to get the

final (and correct) MST,

root

saw

John Mary

10

3030

A possible concern with searching the entire space

of spanning trees is that we have not used any syn-

tactic constraints to guide the search. Many lan-

guages that allow non-projectivity are still primarily

projective. By searching all possible non-projective

trees, we run the risk of finding extremely bad trees.

We address this concern in Section 4.

2.2.2 Projective Trees

It is well known that projective dependency pars-

ing using edge based factorization can be handled

with the Eisner algorithm (Eisner, 1996). This al-

gorithm has a runtime of O(n3) and has been em-
ployed successfully in both generative and discrimi-

native parsing models (Eisner, 1996; McDonald et

al., 2005). Furthermore, it is trivial to show that

the Eisner algorithm solves the maximum projective

spanning tree problem.

The Eisner algorithm differs significantly from

the Chu-Liu-Edmonds algorithm. First of all, it is a

bottom-up dynamic programming algorithm as op-

posed to a greedy recursive one. A bottom-up al-

gorithm is necessary for the projective case since it

must maintain the nested structural constraint, which

is unnecessary for the non-projective case.

2.3 Dependency Trees as MSTs: Summary

In the preceding discussion, we have shown that nat-

ural language dependency parsing can be reduced to

finding maximum spanning trees in directed graphs.

This reduction results from edge-based factoriza-

tion and can be applied to projective languages with

526

(figure and example from McDonald et al, 2005)

I Goal is to find the highest scoring directed spanning tree

Step 1

I For each word, find the highest scoring incoming edge:

Tarjan (1977) gives an efficient implementation of

the algorithm withO(n2) time complexity for dense
graphs, which is what we need here.

To find the highest scoring non-projective tree for

a sentence, x, we simply construct the graph Gx

and run it through the Chu-Liu-Edmonds algorithm.

The resulting spanning tree is the best non-projective

dependency tree. We illustrate here the application

of the Chu-Liu-Edmonds algorithm to dependency

parsing on the simple example x = John saw Mary,

with directed graph representation Gx,

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each

word, the highest scoring incoming edge
root

saw

John Mary30

3020

If the result were a tree, it would have to be the

maximum spanning tree. However, in this case we

have a cycle, so we will contract it into a single node

and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of

vertices John and saw. The edge from wjs to Mary

is 30 since that is the highest scoring edge from any

vertex in wjs. The edge from root into wjs is set to

40 since this represents the score of the best span-

ning tree originating from root and including only

the vertices in wjs. The same leads to the edge

from Mary to wjs. The fundamental property of the

Chu-Liu-Edmonds algorithm is that an MST in this

graph can be transformed into an MST in the orig-

inal graph (Leonidas, 2003). Thus, we recursively

call the algorithm on this graph. Note that we need

to keep track of the real endpoints of the edges into

and out of wjs for reconstruction later. Running the

algorithm, we must find the best incoming edge to

all words

root

saw

John Mary

40

30

wjs

This is a tree and thus the MST of this graph. We

now need to go up a level and reconstruct the graph.

The edge from wjs to Mary originally was from the

word saw, so we include that edge. Furthermore, the

edge from root towjs represented a tree from root to

saw to John, so we include all those edges to get the

final (and correct) MST,

root

saw

John Mary

10

3030

A possible concern with searching the entire space

of spanning trees is that we have not used any syn-

tactic constraints to guide the search. Many lan-

guages that allow non-projectivity are still primarily

projective. By searching all possible non-projective

trees, we run the risk of finding extremely bad trees.

We address this concern in Section 4.

2.2.2 Projective Trees

It is well known that projective dependency pars-

ing using edge based factorization can be handled

with the Eisner algorithm (Eisner, 1996). This al-

gorithm has a runtime of O(n3) and has been em-
ployed successfully in both generative and discrimi-

native parsing models (Eisner, 1996; McDonald et

al., 2005). Furthermore, it is trivial to show that

the Eisner algorithm solves the maximum projective

spanning tree problem.

The Eisner algorithm differs significantly from

the Chu-Liu-Edmonds algorithm. First of all, it is a

bottom-up dynamic programming algorithm as op-

posed to a greedy recursive one. A bottom-up al-

gorithm is necessary for the projective case since it

must maintain the nested structural constraint, which

is unnecessary for the non-projective case.

2.3 Dependency Trees as MSTs: Summary

In the preceding discussion, we have shown that nat-

ural language dependency parsing can be reduced to

finding maximum spanning trees in directed graphs.

This reduction results from edge-based factoriza-

tion and can be applied to projective languages with

526

(figure from McDonald et al 2005)

I If the result of this step is a tree, we have the highest scoring
spanning tree

I If not, we have at least one cycle. Next step is to pick a cycle,
and contract the cycle

The Result of Contracting the Cycle

Tarjan (1977) gives an efficient implementation of

the algorithm withO(n2) time complexity for dense
graphs, which is what we need here.

To find the highest scoring non-projective tree for

a sentence, x, we simply construct the graph Gx

and run it through the Chu-Liu-Edmonds algorithm.

The resulting spanning tree is the best non-projective

dependency tree. We illustrate here the application

of the Chu-Liu-Edmonds algorithm to dependency

parsing on the simple example x = John saw Mary,

with directed graph representation Gx,

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each

word, the highest scoring incoming edge
root

saw

John Mary30

3020

If the result were a tree, it would have to be the

maximum spanning tree. However, in this case we

have a cycle, so we will contract it into a single node

and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of

vertices John and saw. The edge from wjs to Mary

is 30 since that is the highest scoring edge from any

vertex in wjs. The edge from root into wjs is set to

40 since this represents the score of the best span-

ning tree originating from root and including only

the vertices in wjs. The same leads to the edge

from Mary to wjs. The fundamental property of the

Chu-Liu-Edmonds algorithm is that an MST in this

graph can be transformed into an MST in the orig-

inal graph (Leonidas, 2003). Thus, we recursively

call the algorithm on this graph. Note that we need

to keep track of the real endpoints of the edges into

and out of wjs for reconstruction later. Running the

algorithm, we must find the best incoming edge to

all words

root

saw

John Mary

40

30

wjs

This is a tree and thus the MST of this graph. We

now need to go up a level and reconstruct the graph.

The edge from wjs to Mary originally was from the

word saw, so we include that edge. Furthermore, the

edge from root towjs represented a tree from root to

saw to John, so we include all those edges to get the

final (and correct) MST,

root

saw

John Mary

10

3030

A possible concern with searching the entire space

of spanning trees is that we have not used any syn-

tactic constraints to guide the search. Many lan-

guages that allow non-projectivity are still primarily

projective. By searching all possible non-projective

trees, we run the risk of finding extremely bad trees.

We address this concern in Section 4.

2.2.2 Projective Trees

It is well known that projective dependency pars-

ing using edge based factorization can be handled

with the Eisner algorithm (Eisner, 1996). This al-

gorithm has a runtime of O(n3) and has been em-
ployed successfully in both generative and discrimi-

native parsing models (Eisner, 1996; McDonald et

al., 2005). Furthermore, it is trivial to show that

the Eisner algorithm solves the maximum projective

spanning tree problem.

The Eisner algorithm differs significantly from

the Chu-Liu-Edmonds algorithm. First of all, it is a

bottom-up dynamic programming algorithm as op-

posed to a greedy recursive one. A bottom-up al-

gorithm is necessary for the projective case since it

must maintain the nested structural constraint, which

is unnecessary for the non-projective case.

2.3 Dependency Trees as MSTs: Summary

In the preceding discussion, we have shown that nat-

ural language dependency parsing can be reduced to

finding maximum spanning trees in directed graphs.

This reduction results from edge-based factoriza-

tion and can be applied to projective languages with

526

I We merge John and saw (the words in the cycle) into a single
node c

I The weight of the edge from c to Mary is 30 (because the weight
from John to Mary is 3, and from saw to Mary is 30: we take the
highest score)

I See McDonald et al 2005 (posted on the class website, under
lectures) for how the weights from root to c and Mary to c are
calculated

I Having created the new graph, we then recurse (return to step 1)

Step 1 (again)
I For each word, find the highest scoring incoming edge:

Tarjan (1977) gives an efficient implementation of

the algorithm withO(n2) time complexity for dense
graphs, which is what we need here.

To find the highest scoring non-projective tree for

a sentence, x, we simply construct the graph Gx

and run it through the Chu-Liu-Edmonds algorithm.

The resulting spanning tree is the best non-projective

dependency tree. We illustrate here the application

of the Chu-Liu-Edmonds algorithm to dependency

parsing on the simple example x = John saw Mary,

with directed graph representation Gx,

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each

word, the highest scoring incoming edge
root

saw

John Mary30

3020

If the result were a tree, it would have to be the

maximum spanning tree. However, in this case we

have a cycle, so we will contract it into a single node

and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of

vertices John and saw. The edge from wjs to Mary

is 30 since that is the highest scoring edge from any

vertex in wjs. The edge from root into wjs is set to

40 since this represents the score of the best span-

ning tree originating from root and including only

the vertices in wjs. The same leads to the edge

from Mary to wjs. The fundamental property of the

Chu-Liu-Edmonds algorithm is that an MST in this

graph can be transformed into an MST in the orig-

inal graph (Leonidas, 2003). Thus, we recursively

call the algorithm on this graph. Note that we need

to keep track of the real endpoints of the edges into

and out of wjs for reconstruction later. Running the

algorithm, we must find the best incoming edge to

all words

root

saw

John Mary

40

30

wjs

This is a tree and thus the MST of this graph. We

now need to go up a level and reconstruct the graph.

The edge from wjs to Mary originally was from the

word saw, so we include that edge. Furthermore, the

edge from root towjs represented a tree from root to

saw to John, so we include all those edges to get the

final (and correct) MST,

root

saw

John Mary

10

3030

A possible concern with searching the entire space

of spanning trees is that we have not used any syn-

tactic constraints to guide the search. Many lan-

guages that allow non-projectivity are still primarily

projective. By searching all possible non-projective

trees, we run the risk of finding extremely bad trees.

We address this concern in Section 4.

2.2.2 Projective Trees

It is well known that projective dependency pars-

ing using edge based factorization can be handled

with the Eisner algorithm (Eisner, 1996). This al-

gorithm has a runtime of O(n3) and has been em-
ployed successfully in both generative and discrimi-

native parsing models (Eisner, 1996; McDonald et

al., 2005). Furthermore, it is trivial to show that

the Eisner algorithm solves the maximum projective

spanning tree problem.

The Eisner algorithm differs significantly from

the Chu-Liu-Edmonds algorithm. First of all, it is a

bottom-up dynamic programming algorithm as op-

posed to a greedy recursive one. A bottom-up al-

gorithm is necessary for the projective case since it

must maintain the nested structural constraint, which

is unnecessary for the non-projective case.

2.3 Dependency Trees as MSTs: Summary

In the preceding discussion, we have shown that nat-

ural language dependency parsing can be reduced to

finding maximum spanning trees in directed graphs.

This reduction results from edge-based factoriza-

tion and can be applied to projective languages with

526

I If the result of this step is a tree, we have the highest scoring
spanning tree

I This time we have a tree, and we’re done (if not, we would
repeat step 2 again)

I Retracing the steps taken in contracting the cycle allows us to
recover the highest scoring tree:

Tarjan (1977) gives an efficient implementation of

the algorithm withO(n2) time complexity for dense
graphs, which is what we need here.

To find the highest scoring non-projective tree for

a sentence, x, we simply construct the graph Gx

and run it through the Chu-Liu-Edmonds algorithm.

The resulting spanning tree is the best non-projective

dependency tree. We illustrate here the application

of the Chu-Liu-Edmonds algorithm to dependency

parsing on the simple example x = John saw Mary,

with directed graph representation Gx,

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each

word, the highest scoring incoming edge
root

saw

John Mary30

3020

If the result were a tree, it would have to be the

maximum spanning tree. However, in this case we

have a cycle, so we will contract it into a single node

and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of

vertices John and saw. The edge from wjs to Mary

is 30 since that is the highest scoring edge from any

vertex in wjs. The edge from root into wjs is set to

40 since this represents the score of the best span-

ning tree originating from root and including only

the vertices in wjs. The same leads to the edge

from Mary to wjs. The fundamental property of the

Chu-Liu-Edmonds algorithm is that an MST in this

graph can be transformed into an MST in the orig-

inal graph (Leonidas, 2003). Thus, we recursively

call the algorithm on this graph. Note that we need

to keep track of the real endpoints of the edges into

and out of wjs for reconstruction later. Running the

algorithm, we must find the best incoming edge to

all words

root

saw

John Mary

40

30

wjs

This is a tree and thus the MST of this graph. We

now need to go up a level and reconstruct the graph.

The edge from wjs to Mary originally was from the

word saw, so we include that edge. Furthermore, the

edge from root towjs represented a tree from root to

saw to John, so we include all those edges to get the

final (and correct) MST,

root

saw

John Mary

10

3030

A possible concern with searching the entire space

of spanning trees is that we have not used any syn-

tactic constraints to guide the search. Many lan-

guages that allow non-projectivity are still primarily

projective. By searching all possible non-projective

trees, we run the risk of finding extremely bad trees.

We address this concern in Section 4.

2.2.2 Projective Trees

It is well known that projective dependency pars-

ing using edge based factorization can be handled

with the Eisner algorithm (Eisner, 1996). This al-

gorithm has a runtime of O(n3) and has been em-
ployed successfully in both generative and discrimi-

native parsing models (Eisner, 1996; McDonald et

al., 2005). Furthermore, it is trivial to show that

the Eisner algorithm solves the maximum projective

spanning tree problem.

The Eisner algorithm differs significantly from

the Chu-Liu-Edmonds algorithm. First of all, it is a

bottom-up dynamic programming algorithm as op-

posed to a greedy recursive one. A bottom-up al-

gorithm is necessary for the projective case since it

must maintain the nested structural constraint, which

is unnecessary for the non-projective case.

2.3 Dependency Trees as MSTs: Summary

In the preceding discussion, we have shown that nat-

ural language dependency parsing can be reduced to

finding maximum spanning trees in directed graphs.

This reduction results from edge-based factoriza-

tion and can be applied to projective languages with

526

E�ciency

I A naive implementation takes O(n3
) time (n is the number of

nodes in the graph, i.e., the number of words in the input
sentence)

I An improved implementation takes O(n2
) time

Estimating the Parameters

I Again, we can choose the parameters that maximize

L(w) =

nX

i=1

log p(yi|xi
; w)� �

2

||w||2

where {(xi, yi
)}n

i=1 is the training set

I The gradients can again be calculated e�ciently (for example,
see Koo, Globerson, Carreras, and Collins, EMNLP 2007)

