Lecture 2, COMS E6998-3:
Log-linear models, MEMMs, CRFs

Michael Collins

January 26, 2011

Log-Linear Models

» We have sets X and : we will assume that) is a finite set.
We have a feature-vector definition Q: X x)Y — R% We also
assume a parameter vector w € R%. Given these definitions,

exp (w - p(, y))
ey oD (w- oz, y))

p(ylz;w) = >

This is the conditional probability of y given x, under
parameters w.

Notation

» Throughout this lecture I'll use underline to denote vectors.
For example w € R? is a vector, w;, ws, . .., w, are the
individual components of the vector. The inner product
between two vectors is

d
wez=) w
j=1

The Log-Likelihood Function

» To estimate the parameters, we assume we have a set of n
labeled examples, {(x;,y;)}" . The log-likelihood function is

L(w) =) log p(yivs; w)
=1

We can think of L(w) as being a function that for a given w
measures how well w explains the labeled examples. A “good”
value for w will give a high value for p(y;|x;; w) for all

i =1...n, and thus will have a high value for L(w).

Maximum-Likelihood Estimates

» The maximum-likelihood estimates are
n
* . .
w' = arg max Z;logp(yzlrcuw)
i—

The maximum-likelihood estimates are thus the parameters
that best fit the training set, under the criterion L(w). (In
some cases this maximum will not be well-defined—we’ll come
back to this point later—but for now we'll assume that the
maximum exists.)

Finding the Maximum-Likelihood Estimates

» Given a training set {(x;,y;)},, how do we find the
maximum-likelihood parameter estimates w*?

» Unfortunately, closed-form solutions do not in general exist.
Instead, gradient-based optimization methods are often used.
For these we need the derivative of L(w) with respect to the
parameters wy, Wa, . .. wy. |hese derivatives take the form

aw Zcbj i, i) ZZp ylas w)d; (i, y)
J

Regularized Log-Likelihood

» In many cases, it is useful to add a regularization term that
penalizes large parameter values. The new objective function
is:

Zlogp yz|$za 7HZUH

where A > 0 is a constant.
» We again choose the optimal parameter values to be
w* = arg max,ega L(w)

» In this case

8wj Z ¢J x“yl Z Zy:p(ylmi;w)@(xi, y) —)\'wj

Maximum-Entropy Markov Models (MEMMs)

» Goal: model the distribution

p(S1,82. . Sm|T1 ... Tm)

where each z; fori =1...m is a word, and each s; for
i =1...mis an underlying state (for example, a
part-of-speech tag for the i'th word). We use S to refer to the

set of possible states (each s; can take any value in §). S'is a
finite set.

» In HMMs (last lecture), we had

m m

p(xl...xm,sl...sm):t(sl)H (sjlsj-1) He (z]s5)

Jj=2 Jj=1

where t(s'|s) are the transition parameters, and e(z|s) are the
emission parameters.

Independence Assumptions in MEMMs

» MEMMs use the following decomposition:

m
p(S1,82. .. SmlT1 ... Tpm) = Hp(si\sl...si,l,xl...xn)
=1
lm
= Hp(si\si,l,xl...xn)
i=1

» The first step is exact (by the chain rule)

» The second step follows from an independence assumption,
i.e., that for all 7,

p(sils1. .. Sic1, 1. Tm) = P(Si|Sic1, 1. .. T)

Using Log-Linear Models

» We then model each term using a log-linear model:

exp (w - O(x1 . Ty, 1, 851, 5i))

Si|Si—1,T1...2 =
Polsicss) = e (- flar -t 50-1,)

» Here ¢(x1...2,,,1,s,5) is a feature vector where:

> I1...Zy is the sequence of m words to be tagged

i is the position to be tagged (any value from 1...m)
s is the previous state

s’ is the new state

v

v

v

Decoding with MEMMs

» Goal: for a given input sequence x1, ..., Z,,, find

arg max p(sy...Sm|T1...Tm)

S15--+35m

» We can use the Viterbi algorithm again (see last lecture on
HMMs). Basic data structure:

mlJ, sl

will be a table entry that stores the maximum probability for
any state sequence ending in state s at position j. More
formally:

81...85—-1 i}

j—1
7[j,s] = max (p(s]sj_l, Tl Tpy) Hp(sk|sk_1, Ty .. xm)>

The Viterbi Algorithm

» Initialization: for s € S
(1, s] = p(s|so, z1 ... Tm)
where sq is a special “initial” state.
» Forj=2...m,s=1...k:
7[j, s] = max [7[j — 1,8 x p(s|s’, x1 ... 2p)]
s'e
» We then have
max p(sy...Sy|T1 ... 2y) = maxwm, s
S1...8m s
» The algorithm runs in O(mk?) time. As before (see HMM

lecture slides), we can use backpointers to recover the most
likely sequence of states.

Comparison between HMMs and MEMMs

» In MEMMs, each state transition has probability

exp (ﬂ : ?(xl e Ty Si 1, Sl))

SilSi—1, 1 ... 1) =
Polsiss) = e (b1 50-1,)

» In HMMs, each state transition has probability

p(si ’51'71)]7(1)1' |Sz)

» The introduction of feature vectors ¢ allows much richer
representations in MEMMs, for example:

» Sensitivity to any word in the input sequence x; ...z, (not
just ;)

» Sensitivity to spelling features (prefixes, suffixes etc.) of x;,
or of surrounding words

» Parameter estimation in MEMMSs is more expensive than in
HMMs (but is still not prohibitive for most tasks)

Conditional Random Fields (CRFs)

» Notation: for convenience we'll use z to refer to the sequence
of input words, z; ...x,,, and s to refer to a sequence of
possible states, s;...s,,. The set of possible states is S. We
use 8™ to refer to the set of all possible state sequences (we
have |S™| = |S|™).

» We're again going to build a model of

p(s1.. . Smlxr ... xm) = p(s|z)

CRFs

» We use ®(z,s) € RY to refer to a feature vector for an entire
state sequence

» We then build a giant log-linear model,

exp (w - (z, 5))
> wesm exp (w - ®(z,s))

» The model is “giant” in the sense that: 1) the space of
possible values for s, i.e., 8™, is huge. 2) The normalization
constant (denominator in the above expression) involves a sum
over a huge number of possibilities (i.e., all members of S™).

p(slz;w) =

CRFs (continued)

exp (w - ®(z, s))
desm exp (w - ®(z, 8'))

pslz;w) =
» How do we define ®(z, s)? Answer:

m
E x.]?‘sj 175]

where ¢(z,j,5;-1,5;) are the same as the feature vectors used
in MEMMs.

Decoding with CRFs

» The decoding problem: find
exp (w - ®(z, 5))

argmaxplslnw) = A w9z, 5))
= argmax exp (w - ®(z,5s))
seS™

= argmax w-&(z, s)

m
= argmax M'E ¢(Lj,5j—1>5j)
sesS™ -
J:

m
= argmax E w'(é(@aj?‘gjflasj)
sesm L— -
‘]:

» Again, we can use the Viterbi algorithm...

The Viterbi Algorithm for CRFs

v

Initialization: for s € S
7T[17 3] =w- ?(i? 17 S0, S)

where sq is a special “initial” state.

v

Forj=2...m,s=1...k:

mlj, o] = max [n[j — 1, +w- ¢z j, 5, 5)]

We then have

v

m
Srlnas}iz oz, J,55-1,85) = msax7r[m, s
The algorithm runs in O(mk?) time. As before (see HMM
lecture slides), we can use backpointers to recover the most
likely sequence of states.

v

Parameter Estimation in CRFs

» To estimate the parameters, we assume we have a set of n
labeled examples {(2%, s*)}"_,. Each z' is an input sequence
xl . v, each s is a state sequence 31 sﬁn.

» We then proceed in exactly the same way as for regular
log-linear models

» The regularized log-likelihood function is
- Q)0 A
=D logp(s'lz’sw) — Sl
i=1
» Our parameter estimates are

= 1 - = 2
w' = arg max Zogp s w) ||w||

Finding the Maximum-Likelihood Estimates

» We'll again use gradient-based optimization methods to find

w*

» How can we compute the derivatives? As before,

8’[81)k Z(I)k z’ S Z Z |$ w) Py (-73 ,8) — Awg,

i SeES™

» The first term is easily computed, because

Z(I)k(zzvﬁz) - ZZQSIC(&Z?]? S;’—DS;)
i i j=1

» The second term involves a sum over 8™, and because of this
looks nasty...

Calculating Derivatives using the
Forward-Backward Algorithm

» We now consider how to compute the second term:

D p(sla’sw)Pk(a’,s) = > plslzhiw) Y on(a,d,sj-1,5))
j=1

SES™ SES™
=Y > dia,b)ow(a’,j,a,b)
j=1a€eSbeS
where ‘ ‘
¢j(a,b) = > plslzhw)

§€Sm:s]~,1:a,5j:b

(for the full derivation see the notes)

» For a given ¢, all ¢} terms can be computed simultaneously in

O(mk?) time using the forward-backward algorithm, a dynamic
programming algorithm that is closely related to Viterbi.

Why prefer CRFs over MEMMSs?

» (1) We'll soon see in the class that it's eash to generalize
CRFs to a wide range of structured prediction problems

» (2) The label bias problem. An example of a conditional
distribution that MEMMs can’t capture:

abc = a/Ab/Bc/C with p(A B Cla b ¢) =1
abe = a/A b/B e/E with p(A D Ela b e) =1

» It's impossible to find parameters that satisfy

p(A|CL)p(B|b,A)p(C|C,B) =1
p(Ala)p(D[b, A)p(Elc,e) = 1

» It's easy to find parameters in a CRF that model this
distribution correctly.

