Lecture 2: COMS E6998, Spring 2012

Log-Linear Models

Michael Collins

The Language Modeling Problem

- w_{i} is the i 'th word in a document
- Estimate a distribution $P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right)$ given previous "history" w_{1}, \ldots, w_{i-1}.
- E.g., $w_{1}, \ldots, w_{i-1}=$

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

A Second Example: Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N	$=$ Noun
V	$=$ Verb
P	$=$ Preposition
Adv	$=$ Adverb
Adj	$=$ Adjective

A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- There are many possible tags in the position ??
$\{N N, N N S, ~ V t, ~ V i, ~ I N, ~ D T, \ldots\}$
- The task: model the distribution

$$
P\left(t_{i} \mid t_{1}, \ldots, t_{i-1}, w_{1} \ldots w_{n}\right)
$$

where t_{i} is the i 'th tag in the sequence, w_{i} is the i 'th word

A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- The task: model the distribution

$$
P\left(t_{i} \mid t_{1}, \ldots, t_{i-1}, w_{1} \ldots w_{n}\right)
$$

where t_{i} is the i 'th tag in the sequence, w_{i} is the i 'th word

- Many "features" of $t_{1}, \ldots, t_{i-1}, w_{1} \ldots w_{n}$ may be relevant

$$
\begin{array}{l|l}
P\left(t_{i}=\mathrm{NN}\right. & \left.w_{i}=\text { base }\right) \\
P\left(t_{i}=\mathrm{NN}\right. & \left.t_{i-1} \text { is JJ }\right) \\
P\left(t_{i}=\mathrm{NN}\right. & w_{i} \text { ends in "e") } \\
P\left(t_{i}=\mathrm{NN}\right. & w_{i} \text { ends in "se") } \\
P\left(t_{i}=\mathrm{NN}\right. & \left.w_{i-1} \text { is "important" }\right) \\
P\left(t_{i}=\mathrm{NN}\right. & w_{i+1} \text { is "from") }
\end{array}
$$

The General Problem

- We have some input domain \mathcal{X}
- Have a finite label set \mathcal{Y}
- Aim is to provide a conditional probability $P(y \mid x)$ for any x, y where $x \in \mathcal{X}, y \in \mathcal{Y}$

Language Modeling

- x is a "history" $w_{1}, w_{2}, \ldots w_{i-1}$, e.g.,

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

- y is an "outcome" w_{i}

Feature Vector Representations

- Aim is to provide a conditional probability $P(y \mid x)$ for "decision" y given "history" x
- A feature is a function $\phi(x, y) \in \mathbb{R}$ (Often binary features or indicator functions $\phi(x, y) \in\{0,1\}$).
- Say we have m features ϕ_{k} for $k=1 \ldots m$ \Rightarrow A feature vector $\underline{\phi}(x, y) \in \mathbb{R}^{m}$ for any x, y

Language Modeling

- x is a "history" $w_{1}, w_{2}, \ldots w_{i-1}$, e.g.,

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

- y is an "outcome" w_{i}
- Example features:

$$
\begin{aligned}
& \phi_{1}(x, y)= \begin{cases}1 & \text { if } y=\text { model } \\
0 & \text { otherwise }\end{cases} \\
& \phi_{2}(x, y)= \begin{cases}1 & \text { if } y=\text { model and } w_{i-1}=\text { statistical } \\
0 & \text { otherwise }\end{cases} \\
& \phi_{3}(x, y)= \begin{cases}1 & \text { if } y=\text { model, } w_{i-2}=\text { any, } w_{i-1}=\text { statistical } \\
0 & \text { otherwise }\end{cases} \\
& \phi_{4}(x, y)= \begin{cases}1 & \text { if } y=\text { model, } w_{i-2}=\text { any } \\
0 & \text { otherwise }\end{cases} \\
& \phi_{5}(x, y)= \begin{cases}1 & \text { if } y=\text { model, } w_{i-1} \text { is an adjective } \\
0 & \text { otherwise }\end{cases} \\
& \phi_{6}(x, y)
\end{aligned}= \begin{cases}1 & \text { if } y=\text { model, } w_{i-1} \text { ends in "ical" } \\
0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \phi_{7}(x, y)= \begin{cases}1 & \text { if } y=\text { model }, \text { author }=\text { Chomsky } \\
0 & \text { otherwise }\end{cases} \\
& \phi_{8}(x, y)= \begin{cases}1 & \text { if } y=\text { model, "model" is not in } w_{1}, \ldots w_{i-1} \\
0 & \text { otherwise }\end{cases} \\
& \phi_{9}(x, y)= \begin{cases}1 & \text { if } y=\text { model, "grammatical" is in } w_{1}, \ldots w_{i-1} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Defining Features in Practice

- We had the following "trigram" feature:
$\phi_{3}(x, y)= \begin{cases}1 & \text { if } y=\text { model }, w_{i-2}=\operatorname{any}, w_{i-1}=\text { statistical } \\ 0 & \text { otherwise }\end{cases}$
- In practice, we would probably introduce one trigram feature for every trigram seen in the training data: i.e., for all trigrams (u, v, w) seen in training data, create a feature
$\phi_{N(u, v, w)}(x, y)= \begin{cases}1 & \text { if } y=w, w_{i-2}=u, w_{i-1}=v \\ 0 & \text { otherwise }\end{cases}$
where $N(u, v, w)$ is a function that maps each (u, v, w) trigram to a different integer

The POS-Tagging Example

- Each x is a "history" of the form $\left\langle t_{1}, t_{2}, \ldots, t_{i-1}, w_{1} \ldots w_{n}, i\right\rangle$
- Each y is a POS tag, such as $N N, N N S, V t, V i, I N, D T, \ldots$
- We have m features $\phi_{k}(x, y)$ for $k=1 \ldots m$

For example:

$$
\begin{aligned}
& \phi_{1}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } y=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases} \\
& \phi_{2}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } y=\mathrm{VBG} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Full Set of Features in [?]

- Word/tag features for all word/tag pairs, e.g.,

$$
\phi_{100}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } y=\mathrm{Vt} \\ 0 & \text { otherwise }\end{cases}
$$

- Spelling features for all prefixes/suffixes of length ≤ 4, e.g.,

$$
\begin{aligned}
& \phi_{101}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } y=\text { VBG } \\
0 & \text { otherwise }\end{cases} \\
& \phi_{102}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { starts with pre and } y=\mathrm{NN} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Full Set of Features in [?]

- Contextual Features, e.g.,

$$
\begin{aligned}
& \phi_{103}(x, y)= \begin{cases}1 & \text { if }\left\langle t_{i-2}, t_{i-1}, y\right\rangle=\langle\mathrm{DT}, \mathrm{JJ}, \mathrm{Vt}\rangle \\
0 & \text { otherwise }\end{cases} \\
& \phi_{104}(x, y)= \begin{cases}1 & \text { if }\left\langle t_{i-1}, y\right\rangle=\langle\mathrm{JJ}, \mathrm{Vt}\rangle \\
0 & \text { otherwise }\end{cases} \\
& \phi_{105}(x, y)
\end{aligned}=\left\{\begin{array}{ll}
1 & \text { if }\langle y\rangle=\langle\mathrm{Vt}\rangle \\
0 & \text { otherwise }
\end{array}\right\} \begin{aligned}
& \phi_{106}(x, y)= \begin{cases}1 & \text { if previous word } w_{i-1}=\text { the } \text { and } y=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases} \\
& \phi_{107}(x, y)= \begin{cases}1 & \text { if next word } w_{i+1}=\text { the and } y=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Final Result

- We can come up with practically any questions (features) regarding history/tag pairs.
- For a given history $x \in \mathcal{X}$, each label in \mathcal{Y} is mapped to a different feature vector

```
\phi(\langleJJ, DT, \langle Hispaniola, ...\rangle, 6\rangle, Vt) = 1001011001001100110
    \phi(\langleJJ, DT, < Hispaniola, ... \rangle, 6\rangle, JJ) = 0110010101011110010
\underline { \phi } ( \langle \mathrm { JJ } , ~ D T , ~ \langle ~ H i s p a n i o l a , ~ . . . \rangle , ~ 6 \rangle , ~ N N ) ~ = ~ 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 ~
\phi(\langleJJ, DT, \langle Hispaniola, ...\rangle, 6\rangle, IN) = 0001011011000000010
```

