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Pegasos: an Online Algorithm for Learning Support
Vector Machines

An equivalent problem to SVMs:

min (%IIQH2 + (JZ flyi(@- L)))

where f(z) = max(0,1 — z)

We'll first rewrite this in a slightly different form:

mgin (%HQHZ + %Zf(yz(g : L)))

where f(z) = max(0,1 — z)



The Pegasos Algorithm (Shalev-Shwartz et al 2010, 2007)

> Inputs: training set {(z;,yi)}" . T
» Initialization: §; =0
> Fort=1...T:

1. Pick an example ¢ € {1...n} uniformly at random
2. Iyl - z;) <1

1 1
Ht-i-l:( >9+)\t

else if y;(6, - ;) > 1
1
0,11 = (1 - t)

0,

» Return 01,4



Guarantees for Pegasos

0) = S + 5 3 F (6 )

» Define 8" = arg ming g(0)
» Assume for all examples ||z;|| < R.
» With high probability, after T" iterations of Pegasos we have

.. CR?logT
o(0r.0) < @) + 5T

where C' > 1 is some constant

(Note: a precise statement is a little more involved than this,
but this is basically the correct result)



Deriving Pegasos

o0) = S + 5 3 Fle )

» Batch gradient descent:

1. Sethzg
2. Fort=1...T

» Calculate p
Vi = @g(ﬁt)
> Set 0,1 =0, —n:V; where n; > 0 is a step size

3. Return 01,



Deriving Pegasos (continued)

o6) = SR + = 3 F (6 )

» Stochastic gradient descent:

2. Fort=1...T

» Choose an i € {1...n} at random, define

5:6) = S8 + F (0 )

This is an approximation to g(8) based on example i alone.
> Calculate V; = £g;(0,)
» Set 0, =0, — 1V where 1, > 0 is a step size

3. Return 01,



But what is the Gradient of g;(6)?
() = S8 + F(31(0 )

> Clearly

d 2
i (3l?) o

» But f(z) = max{0,1 — z} is not differentiable. However, a
sub-gradient of f(y;(0 - x;) is

—yiz; ifyi(6-z;) <1l; 0 otherwise
» Hence a subgradient of g;(0) is
A — {yi(0 - z;) < 1}y,

where 1{...} is 1 if ... is true, 0 otherwise



Putting it All Together

» If Vi = N0, — 1{y:(0, - ;) < 1}y;z; is the sub-gradient at
iteration ¢
» And we use the update

Qt—i—l =0, =V

where
B 1
m = v

then we have precisely the Pegasos updates



