Support Vector Machines

Michael Collins

January 22, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Maximum-Margin Classifier

- For a given training set (\underline{x}_t, y_t) for $t = 1 \dots n$
- For a given parameter vector $\underline{\theta}$:
 - ► The *functional margin* on the *t*'th example is

$$\gamma_t(\underline{\theta}) = y_t(\underline{\theta} \cdot \underline{x}_t)$$

NOTE: if $\gamma_t(\underline{\theta}) > 0$ for all t, then $\underline{\theta}$ correctly classifies all training examples

► The *geometric margin* on the *t*'th example is

 $\gamma_t(\underline{\theta})/||\underline{\theta}||$

This is the distance of the *t*'th point to the hyperplane (a negative distance means the point is classified incorrectly)

The geometric margin on the training set is then

$$\gamma(\underline{\theta}) = \min_{t} \gamma_t(\underline{\theta}) / ||\underline{\theta}||$$

The Maximum-Margin Hyperplane

 Assume that the data is *separable*, i.e., there exists a hyperplane that correctly classifies all training points. The maximum-margin hyperplane is defined by <u>θ</u>^{*}, where

$$\underline{\theta}^* = \arg \max_{\underline{\theta}} \gamma(\underline{\theta})$$

It has a geometric margin on the training set of $\gamma(\underline{\theta}^*)=\gamma^*$

▶ The perceptron convergence result: assume in addition that for all t, $||\underline{x}_t||^2 \leq R^2$ for some constant R. Then the perceptron algorithm makes at most

$$\frac{R^2}{\gamma^{*2}}$$

mistakes before convergence

Finding the Maximum-Margin Classifier (the *Support Vector Machine*)

An optimization problem:
Find the value for <u>\u03c8</u> that minimizes

$$\frac{1}{2}||\underline{\theta}||^2$$

subject to the constraints

$$y_t(\underline{x}_t \cdot \underline{\theta}) \ge 1$$
 for all $t = 1 \dots n$

- The solution is the maximum margin classifier $\underline{\theta}^*$
- This is a *quadratic programming problem*: optimization of a quadratic objective with linear constraints

Adding a Bias (Offset) Parameter

An optimization problem:
Find the value for (<u>θ</u>, θ₀) that minimizes

$$\frac{1}{2}||\underline{\theta}||^2$$

subject to

$$y_t(\underline{x}_t \cdot \underline{\theta} + \theta_0) \ge 1$$
 for all $t = 1 \dots n$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Note: the bias parameter θ_0 only appears in the constraints

Benefits of the Maximum Margin Solution

- The maximum margin solution for a given training set is unique
- Intuition: drawing the separating hyperplane as far as possible from the training examples will lead to good generalization properties (we'll see some formal guarantees later)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Support Vectors

The maximum margin hyperplane only depends on a subset of the training examples, namely those examples that appear exactly on the margin. These points are called *support vectors*

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A Problem: Sensitivity to Outliers

- If the training data is not separable, the maximum-margin hyperplane does not exist (the optimization problem has no solution)
- Even a single training example can radically change the position of the maximum margin classifier

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introducing Slack Variables

minimize (with respect to $\underline{\theta}, \theta_0$, and ξ_t for $t = 1 \dots n$)

$$\frac{1}{2}||\underline{\theta}||^2 + C\sum_{t=1}^n \xi_t$$

subject to

$$y_t(\underline{\theta} \cdot \underline{x}_t + \theta_0) \ge 1 - \xi_t$$
 and $\xi_t \ge 0$ for all $t = 1 \dots n$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• ξ_t is a "slack variable" for the *t*'th example