Linear Classifiers

Michael Collins

January 18, 2012

Today's Lecture

- Binary classification problems
- Linear classifiers
- The perceptron algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Classification Problems: An Example

- Goal: build a system that automatically determines whether an image is a human face or not
- ► Each image is 100×100 pixels, where each pixel takes a grey-scale value in the set $\{0, 1, 2, \dots, 255\}$
- We represent an image as a point $\underline{x} \in \mathbb{R}^d$, where $d = 100^2 = 10000$
- ▶ We have n = 50 training examples, where each training example is an **input** point $\underline{x} \in \mathbb{R}^{10000}$ paired with a **label** y where y = +1 if the training example contains a face, y = -1 otherwise

Binary Classification Problems

- Goal: Learn a function $f : \mathbb{R}^d \to \{-1, +1\}$
- We have n training examples

$$\{(\underline{x}_1, y_1), (\underline{x}_2, y_2), \dots, (\underline{x}_n, y_n)\}$$

- Each \underline{x}_i is a point in \mathbb{R}^d
- Each y_i is either +1 or -1

Supervised Learning Problems

- Goal: Learn a function $f: \mathcal{X} \to \mathcal{Y}$
- \blacktriangleright We have n training examples

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

where each $x_i \in \mathcal{X}$, and each $y_i \in \mathcal{Y}$

- Often (not always) $\mathcal{X} = \mathbb{R}^d$ for some integer d
- Some possibilities for \mathcal{Y} :
 - $\mathcal{Y} = \{-1, +1\}$ (binary classification)
 - $\mathcal{Y} = \{1, 2, \dots, k\}$ for some k > 2 (multi-class classification)
 - $\mathcal{Y} = \mathbb{R}$ (regression)

A Second Example: Spam Filtering

 Goal: build a system that predicts whether an email message is spam or not

- Training examples: (\underline{x}_i, y_i) for $i = 1 \dots n$
- Each y_i is +1 if a message is spam, -1 otherwise.
- Each \underline{x}_i is a vector in \mathbb{R}^d representing a document

What Kind of Solution would Suffice?

- Say we have n = 50 training examples. Each pixel can take 256 values. It's possible that some pixel, say pixel number 3, has a different value for every one of the 50 training examples
- ▶ Define x_{t,3} for t = 1...n to be the value of pixel 3 on the t'th training example.
- A possible function $f(\underline{x}')$ learned from the training set:

```
For t = 1 \dots 50:
If x'_3 = x_{t,3} then return y_t
Return -1
```

Classifies the training examples perfectly, but does it generalize to new examples?

Model Selection

- How can we find classifiers that generalize well?
- Key point: we must constrain the set of possible functions that we entertain
- If our set of possible functions is too large, we have a risk of finding a "trivial" function that works perfectly on the training data, but does not generalize well
- If our set of possible functions is too small, we may not even be able to find a function that works well on the training data
- Later in the course we'll introduce formal (statistical) analysis relating the "size" of a set of functions to the generalization properties of a learning algorithm

Linear Classifiers through the Origin

Model form:

$$f(\underline{x};\underline{\theta}) = \operatorname{sign}(\theta_1 x_1 + \ldots + \theta_d x_d) = \operatorname{sign}(\underline{x} \cdot \underline{\theta})$$

- $\underline{\theta}$ is a vector of real-valued parameters
- The functions in our class are parameterized by $\underline{\theta} \in \mathbb{R}^d$
- $\operatorname{sign}(z) = +1$ if $z \ge 0$, and -1 otherwise

Linear Classifiers through the Origin: Geometric Intuition

- Each point \underline{x} is in \mathbb{R}^d
- ► The parameters <u>\u03c6</u> specify a hyperplane (linear separator) that separates points into -1 vs. +1

► Specifically, the hyperplane is through the origin, with the vector <u>θ</u> as its normal

Linear Classifiers (General Form)

Model form:

$$f(\underline{x};\underline{\theta},\theta_0) = \mathsf{sign}(\underline{x}\cdot\underline{\theta}+\theta_0)$$

- $\underline{\theta}$ is a vector of real-valued parameters, θ_0 is a "bias" parameter
- ▶ The functions in our class are parameterized by $\underline{\theta} \in \mathbb{R}^d$ and $\theta_0 \in \mathbb{R}$

Linear Classifiers (General Form): Geometric Intuition

- Each point \underline{x} is in \mathbb{R}^d
- ► The parameters <u>\u03c6</u>, \u03c6₀ specify a hyperplane (linear separator) that separates points into -1 vs. +1
- Specifically, the hyperplane has the vector <u>θ</u> as its normal, and is at a distance θ₀/||<u>θ</u>|| from the origin, where ||<u>θ</u>|| is the norm (length) of <u>θ</u>.

A Learning Algorithm: The Perceptron

- We've chosen a function class (the class of linear separators through the origin)
- ► The estimation problem: choose a specific function in this class (i.e., a setting for the parameters <u>θ</u>) on the basis of the training set
- ► One suggestion: find a value for <u>θ</u> that minimizes the number of training errors

$$\hat{E}(\underline{\theta}) = \frac{1}{n} \sum_{t=1}^{n} \left(1 - \delta(y_t, f(\underline{x}_t; \underline{\theta})) \right) = \frac{1}{n} \sum_{t=1}^{n} \mathsf{Loss}(y_t, f(\underline{x}_t; \underline{\theta}))$$

where $\delta(y,y')$ is 1 if y=y', 0 otherwise

Other definitions of Loss are possible

The Perceptron Algorithm

• Initialization: $\underline{\theta} = \underline{0}$ (i.e., all parameters are set to 0)

Repeat until convergence:

• For
$$t = 1 \dots n$$

1.
$$y' = \operatorname{sign}(\underline{x}_t \cdot \underline{\theta})$$

2. If $y' \neq y_t$ Then $\underline{\theta} = \underline{\theta} + y_t \underline{x}_t$, Else leave $\underline{\theta}$ unchanged

► "Convergence" occurs when the parameter vector <u>θ</u> remains unchanged for an entire pass over the training set. At that point, all training examples are classified correctly

More about the Perceptron

- Analysis: if there exists a parameter setting <u>*θ*</u> that correctly classifies all training examples, the algorithm will converge.
 Otherwise, the algorithm will not converge.
- ▶ Intuition: Suppose we make a mistake on \underline{x}_t . We then do the update $\underline{\theta}' = \underline{\theta} + y_t \underline{x}_t$. From this:

$$y_t(\theta' \cdot \underline{x}_t) = y_t(\underline{\theta} + y_t \underline{x}_t) \cdot \underline{x}_t = y_t(\underline{\theta} \cdot \underline{x}_t) + y_t^2(\underline{x}_t \cdot \underline{x}_t) = y_t(\underline{\theta} \cdot \underline{x}_t) + ||\underline{x}_t||^2$$

• Hence $y_t(\theta \cdot \underline{x}_t)$ increases by $||\underline{x}_t||^2$

The Perceptron Convergence Theorem

▶ Assume their exists some parameter vector $\underline{\theta}^*$, and some $\gamma > 0$ such that for all $t = 1 \dots n$,

$$y_t(\underline{x}_t \cdot \underline{\theta}^*) \ge \gamma$$

- Assume in addition that for all $t = 1 \dots n$, $||\underline{x}_t|| \leq R$
- Then the perceptron algorithm makes at most

$$\frac{R^2 ||\underline{\theta}^*||^2}{\gamma^2}$$

updates before convergence

A Geometric Interpretation

▶ Assume their exists some parameter vector $\underline{\theta}^*$, and some $\gamma > 0$ such that for all $t = 1 \dots n$,

$$y_t(\underline{x}_t \cdot \underline{\theta}^*) \ge \gamma$$

• The ratio $\gamma/||\underline{\theta}^*||$ is the smallest distance of any point \underline{x}_t to the hyperplane defined by $\underline{\theta}^*$