
Linear Classifiers

Michael Collins

January 18, 2012



Today’s Lecture

I Binary classification problems

I Linear classifiers

I The perceptron algorithm



Classification Problems: An Example

I Goal: build a system that automatically determines whether
an image is a human face or not

I Each image is 100× 100 pixels, where each pixel takes a
grey-scale value in the set {0, 1, 2, . . . , 255}

I We represent an image as a point x ∈ Rd, where
d = 1002 = 10000

I We have n = 50 training examples, where each training
example is an input point x ∈ R10000 paired with a label y
where y = +1 if the training example contains a face, y = −1
otherwise



Binary Classification Problems

I Goal: Learn a function f : Rd → {−1,+1}
I We have n training examples

{(x1, y1), (x2, y2), . . . , (xn, yn)}

I Each xi is a point in Rd

I Each yi is either +1 or −1



Supervised Learning Problems

I Goal: Learn a function f : X → Y

I We have n training examples

{(x1, y1), (x2, y2), . . . , (xn, yn)}

where each xi ∈ X , and each yi ∈ Y

I Often (not always) X = Rd for some integer d

I Some possibilities for Y :

I Y = {−1,+1} (binary classification)
I Y = {1, 2, . . . , k} for some k > 2 (multi-class classification)
I Y = R (regression)



A Second Example: Spam Filtering

I Goal: build a system that predicts whether an email message
is spam or not

I Training examples: (xi, yi) for i = 1 . . . n

I Each yi is +1 if a message is spam, −1 otherwise.

I Each xi is a vector in Rd representing a document



What Kind of Solution would Suffice?

I Say we have n = 50 training examples. Each pixel can take
256 values. It’s possible that some pixel, say pixel number 3,
has a different value for every one of the 50 training examples

I Define xt,3 for t = 1 . . . n to be the value of pixel 3 on the t’th
training example.

I A possible function f(x′) learned from the training set:

For t = 1 . . . 50:
If x′3 = xt,3 then return yt

Return −1
I Classifies the training examples perfectly, but does it

generalize to new examples?



Model Selection

I How can we find classifiers that generalize well?

I Key point: we must constrain the set of possible functions
that we entertain

I If our set of possible functions is too large, we have a risk of
finding a “trivial” function that works perfectly on the training
data, but does not generalize well

I If our set of possible functions is too small, we may not even
be able to find a function that works well on the training data

I Later in the course we’ll introduce formal (statistical) analysis
relating the “size” of a set of functions to the generalization
properties of a learning algorithm



Linear Classifiers through the Origin

I Model form:

f(x; θ) = sign(θ1x1 + . . .+ θdxd) = sign(x · θ)

I θ is a vector of real-valued parameters

I The functions in our class are parameterized by θ ∈ Rd

I sign(z) = +1 if z ≥ 0, and −1 otherwise



Linear Classifiers through the Origin:

Geometric Intuition

I Each point x is in Rd

I The parameters θ specify a hyperplane (linear separator) that
separates points into −1 vs. +1

I Specifically, the hyperplane is through the origin, with the
vector θ as its normal



Linear Classifiers (General Form)

I Model form:
f(x; θ, θ0) = sign(x · θ + θ0)

I θ is a vector of real-valued parameters, θ0 is a “bias”
parameter

I The functions in our class are parameterized by θ ∈ Rd and
θ0 ∈ R



Linear Classifiers (General Form): Geometric

Intuition

I Each point x is in Rd

I The parameters θ, θ0 specify a hyperplane (linear separator)
that separates points into −1 vs. +1

I Specifically, the hyperplane has the vector θ as its normal, and
is at a distance θ0/||θ|| from the origin, where ||θ|| is the norm
(length) of θ.



A Learning Algorithm: The Perceptron

I We’ve chosen a function class (the class of linear separators
through the origin)

I The estimation problem: choose a specific function in this
class (i.e., a setting for the parameters θ) on the basis of the
training set

I One suggestion: find a value for θ that minimizes the number
of training errors

Ê(θ) =
1

n

n∑
t=1

(1− δ(yt, f(xt; θ))) =
1

n

n∑
t=1

Loss(yt, f(xt; θ))

where δ(y, y′) is 1 if y = y′, 0 otherwise

I Other definitions of Loss are possible



The Perceptron Algorithm

I Initialization: θ = 0 (i.e., all parameters are set to 0)

I Repeat until convergence:

I For t = 1 . . . n

1. y′ = sign(xt · θ)
2. If y′ 6= yt Then θ = θ + ytxt, Else leave θ unchanged

I “Convergence” occurs when the parameter vector θ remains
unchanged for an entire pass over the training set. At that
point, all training examples are classified correctly



More about the Perceptron

I Analysis: if there exists a parameter setting θ that correctly
classifies all training examples, the algorithm will converge.
Otherwise, the algorithm will not converge.

I Intuition: Suppose we make a mistake on xt. We then do the
update θ′ = θ + ytxt. From this:

yt(θ
′ · xt) = yt(θ + ytxt) · xt

= yt(θ · xt) + y2t (xt · xt)
= yt(θ · xt) + ||xt||2

I Hence yt(θ · xt) increases by ||xt||2



The Perceptron Convergence Theorem

I Assume their exists some parameter vector θ∗, and some
γ > 0 such that for all t = 1 . . . n,

yt(xt · θ∗) ≥ γ

I Assume in addition that for all t = 1 . . . n, ||xt|| ≤ R

I Then the perceptron algorithm makes at most

R2||θ∗||2

γ2

updates before convergence



A Geometric Interpretation

I Assume their exists some parameter vector θ∗, and some
γ > 0 such that for all t = 1 . . . n,

yt(xt · θ∗) ≥ γ

I The ratio γ/||θ∗|| is the smallest distance of any point xt to
the hyperplane defined by θ∗


