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Overview

» Markov models

» Hidden Markov models



Markov Sequences

» Consider a sequence of random variables X, Xo,..., X,
where m is the length of the sequence

» Each variable X; can take any value in {1,2,... k}

» How do we model the joint distribution

P(Xl :.CChXQ:JZQ,...,Xm:QZm)



The Markov Assumption

P(Xl :xl,XQZZEQ,...,Xm:JZm)

= P(Xl = xl)HP(X] = .fL'j|X1 =T1,... ,Xj,l = .ij,l)
j=2

= P(Xy =) [[ P(X; = 21X 0 = 2;9)
=2

» The first equality is exact (by the chain rule).

» The second equality follows from the Markov assumption: for
all j=2...m,

P(Xj = a:j]Xl =T1y.-. 7Xj—1 = acj_l) = P(Xj = -Tj‘Xj—l = xj_l)



Homogeneous Markov Chains

» In a homogeneous Markov chain, we make an additional
assumption, that for j =2...m,

P(Xj = x| X1 = xj1) = qajlzj-)
where ¢(2'|z) is some function
» |dea behind this assumption: the transition probabilities do

not depend on the position in the Markov chain (do not
depend on the index j)



Markov Models

» Our model is then as follows:

m
p(xl,xg, . xma - q a1 Hq x]|£] 1
Jj=2

» Parameters in the model:

» q(x) forz ={1,2,...,k}
Constraints: ¢(z) > 0 and Zf::l q(z) =1

» q(2'|z) for z ={1,2,...,k} and 2’ = {1,2,... k}
Constraints: ¢(z/|z) > 0 and Zilzl q(2’|z) =1



A Generative Story for Markov Models

» A sequence x1, s, ..., T,, is generated by the following
process:

1. Pick x; at random from the distribution ¢(x)

2. Forg=2...m:

» Choose z; at random from the distribution g(x|z;_1)



Today's Lecture

» Markov models

» Hidden Markov models



Modeling Pairs of Sequences

» In many applications, we need to model pairs of sequences
» Examples:

1. Part-of-speech tagging in natural language processing (assign
each word in a sentence to one of the categories noun, verb,
preposition etc.)

2. Speech recognition (map acoustic sequences to sequences of
words)

3. Computational biology: recover gene boundaries in DNA
sequences



Probabilistic Models for Sequence Pairs

» We have two sequences of random variables:
Xl,XQ,...7Xm and Sl,SQ,...,Sm

» Intuitively, each X; corresponds to an “observation” and each
S; corresponds to an underlying “state” that generated the
observation. Assume that each S; is in {1,2,...k}, and each
X;isin{l,2,...0}

» How do we model the joint distribution

P(Xl:ZL’l,...,Xm:.l’m7Sl:Sl,...,Sm:Sm)



Hidden Markov Models (HMMs)

» In HMMSs, we assume that:

P(Xl:'Tla"‘7Xm:xm7S1:‘917"'75 :Sm)

= P(S) = s1) | [ P(8; = 551851 = 55-0) [ [ P(X; = 518, = 55)
j=1

Jj=2



Independence Assumptions in HMMs

» By the chain rule, the following equality is exact:

P(Xlz.’lfl,...,Xm:l’m,Sl:Sl,...,Sm:Sm>

= P(Slzsl,...,szsm)x
PXi=z1,..., X =xp|S1=81,...,5m = Sm)

» Assumption 1: the state sequence forms a Markov chain

P(Slzsl,...,smzsm) Sl—sl HPS :Sj’ijlzsjfl>
7j=2



Independence Assumptions in HMMs

» By the chain rule, the following equality is exact:

P(Xl:[L’l,...,Xm:$m|81281,...,sm28m)

= HP(X]':xj‘sl:817-"7Sm:8m7X1:xla---Xjflzxj)
j=1

» Assumption 2: each observation depends only on the
underlying state

P(Xj :xj"sl :317-'->Sm25m>X1 :$1,...Xj,1 :xj)
= P(X; =15 = 55)



The Model Form for HMMs

» The model takes the following form:

m m

p(xl...xm,sl...sm;Q):t(sl)H (sjlsj-1 He z;|s;)

J=2 J=1

» Parameters in the model:

1. Initial state parameters t(s) for s € {1,2,...,k}
2. Transition parameters t(s'|s) for s,s" € {1,2,...,k}

3. Emission parameters e(z|s) for s € {1,2,...,k} and
xz€{l,2,...,0}



A Generative Story for Hidden Markov Models

» Sequence pairs $1, Sa,...,S, and T, Ts, ..., T,, are generated
by the following process:

1. Pick s1 at random from the distribution ¢(s). Pick 1 from
the distribution e(x|s;)

2. Forj=2...m:

» Choose s; at random from the distribution t(s|s;_1)

» Choose z; at random from the distribution e(x|s;)



Today's Lecture

» More on Hidden Markov models:

» parameter estimation

» The Viterbi algorithm



Parameter Estimation with Fully Observed Data

» We'll now discuss parameter estimates in the case of fully
observed data: for ¢ = 1...n, we have pairs of sequences z; ;
forj=1...mands;; for j=1...m. (i.e., we have n
training examples, each of length m.)



Parameter Estimation: Transition Parameters

» Assume we have fully observed data: for : = 1...n, we have
pairs of sequences x; ; for j =1...mand s;; forj=1...m

» Define count(i, s — s’) to be the number of times state s
follows state s in the ¢'th training example. More formally:

m—1
count(i, s — ') g 85 =8NS 01 =5
J=1

(We define [[r]] to be 1 if 7 is true, 0 otherwise.)

» The maximum-likelihood estimates of transition probabilities
are then " . .
> o count(i,s — ')

S Y. count(i, s — 8')

t(s']s) =




Parameter Estimation: Emission Parameters

» Assume we have fully observed data: for : = 1...n, we have
pairs of sequences x; ; for j =1...m and s;; forj=1...m

» Define count(i, s ~ z) to be the number of times state s is
paired with emission x. More formally:

m
count(i, s ~ ) g [[si; = s N wij=x]]

» The maximum-likelihood estimates of emission probabilities
are then . '
> i count(i, s ~ x)

elzls) = Yo > count(i, s ~ x)




Parameter Estimation: Initial State Parameters

» Assume we have fully observed data: for : = 1...n, we have
pairs of sequences x; ; for j =1...m and s;; forj=1...m

» Define count(i, s) to be 1 if state s is the initial state in the
sequence, and 0 otherwise:

count(i, s) = [[si1 = ]

» The maximum-likelihood estimates of initial state probabilities

are: . ‘
> i, count(i, s)

n

t(s) =




Today's Lecture

» Hidden Markov models:

» parameter estimation

» the Viterbi algorithm



The Viterbi Algorithm

» Goal: for a given input sequence z1, ..., T,,, find

arg max p(xy...Tm,S1...Sm;0)

815--5Sm

» This is the most likely state sequence s; ... s,, for the given
input sequence i ...2%,



The Viterbi Algorithm

» Goal: for a given input sequence x1, ..., x,,, find

arg max p(ry...Tm,S1---Sm;0)

515--55m

» The Viterbi algorithm is a dynamic programming algorithm.
Basic data structure:
7, 5]
will be a table entry that stores the maximum probability for
any state sequence ending in state s at position j. More
formally: 7[1,s] = t(s)e(x1]s), and for j > 1,

j—1
7[j,s] = max [t(81)6($1|51) (Ht(8k|8k—1)€($k|5k)> 75(5|8j1)€(90j|8)]

St k=2



The Viterbi Algorithm

» Initialization: for s=1...k
(1, s] = t(s)e(xy|s)
» Forj=2...m,s=1...k:
ml sl = max [n[j =1, 5] x 1(s]s) x e(a;]s)]
» We then have

max p(Zy...Tm,S1 ... Sm; ) = max[m, s]

81...8m, s

v

The algorithm runs in O(mk?) time



Viterbi as a Shortest-Path Algorithm

» The input sequence ;... x,, is fixed

» Have vertices in a graph labeled (j,s) for s € {1...k} and
j =1...m. In addition have a source vertex labeled 0

» For s € {1...k}, we have a directed edge from vertex 0 to
vertex (1,s), with weight ¢(s)e(x1]s)

» For each j =2...m, and s,s € {1...k}, have a directed
edge from (j — 1, s) to (j, s’) with weight t(s'[s)e(x;|s") (the
weight of any path is the product of weights on edges in the
path)

» 7[j, s] is the highest weight for any path from vertex 0 to
vertex (7, s)



The Viterbi Algorithm: Backpointers

» |nitialization: fors=1...k

71, s] = t(s)e(xy|s)

» Forj=2...m,s=1...k:

wlios) = max [rlj = 1,5) x t(s]s") x e(as[s)

and
bplj, s] = arg max [r[j — 1, '] x t(s]s") x e(z;]s)]

s'e{l...k}

» The bp entries are backpointers that will allow us to recover
the identity of the highest probability state sequence



Viterbi Algorithm: Backpointers (continued)

» Highest probability for any sequence of states is

max m|m, s
S

» To recover identity of highest-probability sequence:
Sm = argmax m|m, s

S

and for j =m...2,

sj—1 = bply, sj]

» The sequence of states s1...s,, is then

arg max p(xy...Tm,S1...Sm;0)

S15--35m



