Hidden Markov Models

Michael Collins

January 18, 2012

Overview

- Markov models
- Hidden Markov models

Markov Sequences

- Consider a sequence of random variables $X_{1}, X_{2}, \ldots, X_{m}$ where m is the length of the sequence
- Each variable X_{i} can take any value in $\{1,2, \ldots, k\}$
- How do we model the joint distribution

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{m}=x_{m}\right)
$$

?

The Markov Assumption

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{m}=x_{m}\right) \\
= & P\left(X_{1}=x_{1}\right) \prod_{j=2}^{m} P\left(X_{j}=x_{j} \mid X_{1}=x_{1}, \ldots, X_{j-1}=x_{j-1}\right) \\
= & P\left(X_{1}=x_{1}\right) \prod_{j=2}^{m} P\left(X_{j}=x_{j} \mid X_{j-1}=x_{j-1}\right)
\end{aligned}
$$

- The first equality is exact (by the chain rule).
- The second equality follows from the Markov assumption: for all $j=2 \ldots m$,

$$
P\left(X_{j}=x_{j} \mid X_{1}=x_{1}, \ldots, X_{j-1}=x_{j-1}\right)=P\left(X_{j}=x_{j} \mid X_{j-1}=x_{j-1}\right)
$$

Homogeneous Markov Chains

- In a homogeneous Markov chain, we make an additional assumption, that for $j=2 \ldots m$,

$$
P\left(X_{j}=x_{j} \mid X_{j-1}=x_{j-1}\right)=q\left(x_{j} \mid x_{j-1}\right)
$$

where $q\left(x^{\prime} \mid x\right)$ is some function

- Idea behind this assumption: the transition probabilities do not depend on the position in the Markov chain (do not depend on the index j)

Markov Models

- Our model is then as follows:

$$
p\left(x_{1}, x_{2}, \ldots x_{m} ; \underline{\theta}\right)=q\left(x_{1}\right) \prod_{j=2}^{m} q\left(x_{j} \mid x_{j-1}\right)
$$

- Parameters in the model:
- $q(x)$ for $x=\{1,2, \ldots, k\}$

Constraints: $q(x) \geq 0$ and $\sum_{x=1}^{k} q(x)=1$

- $q\left(x^{\prime} \mid x\right)$ for $x=\{1,2, \ldots, k\}$ and $x^{\prime}=\{1,2, \ldots, k\}$

Constraints: $q\left(x^{\prime} \mid x\right) \geq 0$ and $\sum_{x^{\prime}=1}^{k} q\left(x^{\prime} \mid x\right)=1$

A Generative Story for Markov Models

- A sequence $x_{1}, x_{2}, \ldots, x_{m}$ is generated by the following process:

1. Pick x_{1} at random from the distribution $q(x)$
2. For $j=2 \ldots m$:

- Choose x_{j} at random from the distribution $q\left(x \mid x_{j-1}\right)$

Today's Lecture

- Markov models
- Hidden Markov models

Modeling Pairs of Sequences

- In many applications, we need to model pairs of sequences
- Examples:

1. Part-of-speech tagging in natural language processing (assign each word in a sentence to one of the categories noun, verb, preposition etc.)
2. Speech recognition (map acoustic sequences to sequences of words)
3. Computational biology: recover gene boundaries in DNA sequences

Probabilistic Models for Sequence Pairs

- We have two sequences of random variables:
$X_{1}, X_{2}, \ldots, X_{m}$ and $S_{1}, S_{2}, \ldots, S_{m}$
- Intuitively, each X_{i} corresponds to an "observation" and each S_{i} corresponds to an underlying "state" that generated the observation. Assume that each S_{i} is in $\{1,2, \ldots k\}$, and each X_{i} is in $\{1,2, \ldots o\}$
- How do we model the joint distribution

$$
P\left(X_{1}=x_{1}, \ldots, X_{m}=x_{m}, S_{1}=s_{1}, \ldots, S_{m}=s_{m}\right)
$$

Hidden Markov Models (HMMs)

- In HMMs, we assume that:

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, \ldots, X_{m}=x_{m}, S_{1}=s_{1}, \ldots, S_{m}=s_{m}\right) \\
& =P\left(S_{1}=s_{1}\right) \prod_{j=2}^{m} P\left(S_{j}=s_{j} \mid S_{j-1}=s_{j-1}\right) \prod_{j=1}^{m} P\left(X_{j}=x_{j} \mid S_{j}=s_{j}\right)
\end{aligned}
$$

Independence Assumptions in HMMs

- By the chain rule, the following equality is exact:

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, \ldots, X_{m}=x_{m}, S_{1}=s_{1}, \ldots, S_{m}=s_{m}\right) \\
= & P\left(S_{1}=s_{1}, \ldots, S_{m}=s_{m}\right) \times \\
& P\left(X_{1}=x_{1}, \ldots, X_{m}=x_{m} \mid S_{1}=s_{1}, \ldots, S_{m}=s_{m}\right)
\end{aligned}
$$

- Assumption 1: the state sequence forms a Markov chain

$$
P\left(S_{1}=s_{1}, \ldots, S_{m}=s_{m}\right)=P\left(S_{1}=s_{1}\right) \prod_{j=2}^{m} P\left(S_{j}=s_{j} \mid S_{j-1}=s_{j-1}\right)
$$

Independence Assumptions in HMMs

- By the chain rule, the following equality is exact:

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, \ldots, X_{m}=x_{m} \mid S_{1}=s_{1}, \ldots, S_{m}=s_{m}\right) \\
= & \prod_{j=1}^{m} P\left(X_{j}=x_{j} \mid S_{1}=s_{1}, \ldots, S_{m}=s_{m}, X_{1}=x_{1}, \ldots X_{j-1}=x_{j}\right)
\end{aligned}
$$

- Assumption 2: each observation depends only on the underlying state

$$
\begin{aligned}
& P\left(X_{j}=x_{j} \mid S_{1}=s_{1}, \ldots, S_{m}=s_{m}, X_{1}=x_{1}, \ldots X_{j-1}=x_{j}\right) \\
= & P\left(X_{j}=x_{j} \mid S_{j}=s_{j}\right)
\end{aligned}
$$

The Model Form for HMMs

- The model takes the following form:

$$
p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m} ; \underline{\theta}\right)=t\left(s_{1}\right) \prod_{j=2}^{m} t\left(s_{j} \mid s_{j-1}\right) \prod_{j=1}^{m} e\left(x_{j} \mid s_{j}\right)
$$

- Parameters in the model:

1. Initial state parameters $t(s)$ for $s \in\{1,2, \ldots, k\}$
2. Transition parameters $t\left(s^{\prime} \mid s\right)$ for $s, s^{\prime} \in\{1,2, \ldots, k\}$
3. Emission parameters $e(x \mid s)$ for $s \in\{1,2, \ldots, k\}$ and $x \in\{1,2, \ldots, o\}$

A Generative Story for Hidden Markov Models

- Sequence pairs $s_{1}, s_{2}, \ldots, s_{m}$ and $x_{1}, x_{2}, \ldots, x_{m}$ are generated by the following process:

1. Pick s_{1} at random from the distribution $t(s)$. Pick x_{1} from the distribution $e\left(x \mid s_{1}\right)$
2. For $j=2 \ldots m$:

- Choose s_{j} at random from the distribution $t\left(s \mid s_{j-1}\right)$
- Choose x_{j} at random from the distribution $e\left(x \mid s_{j}\right)$

Today's Lecture

- More on Hidden Markov models:
- parameter estimation
- The Viterbi algorithm

Parameter Estimation with Fully Observed Data

- We'll now discuss parameter estimates in the case of fully observed data: for $i=1 \ldots n$, we have pairs of sequences $x_{i, j}$ for $j=1 \ldots m$ and $s_{i, j}$ for $j=1 \ldots m$. (i.e., we have n training examples, each of length m.)

Parameter Estimation: Transition Parameters

- Assume we have fully observed data: for $i=1 \ldots n$, we have pairs of sequences $x_{i, j}$ for $j=1 \ldots m$ and $s_{i, j}$ for $j=1 \ldots m$
- Define count $\left(i, s \rightarrow s^{\prime}\right)$ to be the number of times state s^{\prime} follows state s in the i 'th training example. More formally:

$$
\operatorname{count}\left(i, s \rightarrow s^{\prime}\right)=\sum_{j=1}^{m-1}\left[\left[s_{i, j}=s \wedge s_{i, j+1}=s^{\prime}\right]\right]
$$

(We define $[[\pi]]$ to be 1 if π is true, 0 otherwise.)

- The maximum-likelihood estimates of transition probabilities are then

$$
t\left(s^{\prime} \mid s\right)=\frac{\sum_{i=1}^{n} \operatorname{count}\left(i, s \rightarrow s^{\prime}\right)}{\sum_{i=1}^{n} \sum_{s^{\prime}} \operatorname{count}\left(i, s \rightarrow s^{\prime}\right)}
$$

Parameter Estimation: Emission Parameters

- Assume we have fully observed data: for $i=1 \ldots n$, we have pairs of sequences $x_{i, j}$ for $j=1 \ldots m$ and $s_{i, j}$ for $j=1 \ldots m$
- Define count $(i, s \rightsquigarrow x)$ to be the number of times state s is paired with emission x. More formally:

$$
\operatorname{count}(i, s \rightsquigarrow x)=\sum_{j=1}^{m}\left[\left[s_{i, j}=s \wedge x_{i, j}=x\right]\right]
$$

- The maximum-likelihood estimates of emission probabilities are then

$$
e(x \mid s)=\frac{\sum_{i=1}^{n} \operatorname{count}(i, s \rightsquigarrow x)}{\sum_{i=1}^{n} \sum_{x} \operatorname{count}(i, s \rightsquigarrow x)}
$$

Parameter Estimation: Initial State Parameters

- Assume we have fully observed data: for $i=1 \ldots n$, we have pairs of sequences $x_{i, j}$ for $j=1 \ldots m$ and $s_{i, j}$ for $j=1 \ldots m$
- Define count (i, s) to be 1 if state s is the initial state in the sequence, and 0 otherwise:

$$
\operatorname{count}(i, s)=\left[\left[s_{i, 1}=s\right]\right]
$$

- The maximum-likelihood estimates of initial state probabilities are:

$$
t(s)=\frac{\sum_{i=1}^{n} \operatorname{count}(i, s)}{n}
$$

Today's Lecture

- Hidden Markov models:
- parameter estimation
- the Viterbi algorithm

The Viterbi Algorithm

- Goal: for a given input sequence x_{1}, \ldots, x_{m}, find

$$
\arg \max _{s_{1}, \ldots, s_{m}} p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m} ; \underline{\theta}\right)
$$

- This is the most likely state sequence $s_{1} \ldots s_{m}$ for the given input sequence $x_{1} \ldots x_{m}$

The Viterbi Algorithm

- Goal: for a given input sequence x_{1}, \ldots, x_{m}, find

$$
\arg \max _{s_{1}, \ldots, s_{m}} p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m} ; \underline{\theta}\right)
$$

- The Viterbi algorithm is a dynamic programming algorithm. Basic data structure:

$$
\pi[j, s]
$$

will be a table entry that stores the maximum probability for any state sequence ending in state s at position j. More formally: $\pi[1, s]=t(s) e\left(x_{1} \mid s\right)$, and for $j>1$,

$$
\pi[j, s]=\max _{s_{1} \ldots s_{j-1}}\left[t\left(s_{1}\right) e\left(x_{1} \mid s_{1}\right)\left(\prod_{k=2}^{j-1} t\left(s_{k} \mid s_{k-1}\right) e\left(x_{k} \mid s_{k}\right)\right) t\left(s \mid s_{j-1}\right) e\left(x_{j} \mid s\right)\right]
$$

The Viterbi Algorithm

- Initialization: for $s=1 \ldots k$

$$
\pi[1, s]=t(s) e\left(x_{1} \mid s\right)
$$

- For $j=2 \ldots m, s=1 \ldots k$:

$$
\pi[j, s]=\max _{s^{\prime} \in\{1 \ldots k\}}\left[\pi\left[j-1, s^{\prime}\right] \times t\left(s \mid s^{\prime}\right) \times e\left(x_{j} \mid s\right)\right]
$$

- We then have

$$
\max _{s_{1} \ldots s_{m}} p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m} ; \underline{\theta}\right)=\max _{s} \pi[m, s]
$$

- The algorithm runs in $O\left(m k^{2}\right)$ time

Viterbi as a Shortest-Path Algorithm

- The input sequence $x_{1} \ldots x_{m}$ is fixed
- Have vertices in a graph labeled (j, s) for $s \in\{1 \ldots k\}$ and $j=1 \ldots m$. In addition have a source vertex labeled 0
- For $s \in\{1 \ldots k\}$, we have a directed edge from vertex 0 to vertex $(1, s)$, with weight $t(s) e\left(x_{1} \mid s\right)$
- For each $j=2 \ldots m$, and $s, s^{\prime} \in\{1 \ldots k\}$, have a directed edge from $(j-1, s)$ to $\left(j, s^{\prime}\right)$ with weight $t\left(s^{\prime} \mid s\right) e\left(x_{j} \mid s^{\prime}\right)$ (the weight of any path is the product of weights on edges in the path)
- $\pi[j, s]$ is the highest weight for any path from vertex 0 to vertex (j, s)

The Viterbi Algorithm: Backpointers

- Initialization: for $s=1 \ldots k$

$$
\pi[1, s]=t(s) e\left(x_{1} \mid s\right)
$$

- For $j=2 \ldots m, s=1 \ldots k$:

$$
\pi[j, s]=\max _{s^{\prime} \in\{1 \ldots k\}}\left[\pi\left[j-1, s^{\prime}\right] \times t\left(s \mid s^{\prime}\right) \times e\left(x_{j} \mid s\right)\right]
$$

and

$$
b p[j, s]=\arg \max _{s^{\prime} \in\{1 \ldots k\}}\left[\pi\left[j-1, s^{\prime}\right] \times t\left(s \mid s^{\prime}\right) \times e\left(x_{j} \mid s\right)\right]
$$

- The $b p$ entries are backpointers that will allow us to recover the identity of the highest probability state sequence

Viterbi Algorithm: Backpointers (continued)

- Highest probability for any sequence of states is

$$
\max _{s} \pi[m, s]
$$

- To recover identity of highest-probability sequence:

$$
s_{m}=\arg \max _{s} \pi[m, s]
$$

and for $j=m \ldots 2$,

$$
s_{j-1}=b p\left[j, s_{j}\right]
$$

- The sequence of states $s_{1} \ldots s_{m}$ is then

$$
\arg \max _{s_{1}, \ldots, s_{m}} p\left(x_{1} \ldots x_{m}, s_{1} \ldots s_{m} ; \underline{\theta}\right)
$$

