
Hidden Markov Models

Michael Collins

January 18, 2012

Overview

I Markov models

I Hidden Markov models

Markov Sequences

I Consider a sequence of random variables X1, X2, . . . , Xm

where m is the length of the sequence

I Each variable Xi can take any value in {1, 2, . . . , k}

I How do we model the joint distribution

P (X1 = x1, X2 = x2, . . . , Xm = xm)

?

The Markov Assumption

P (X1 = x1, X2 = x2, . . . , Xm = xm)

= P (X1 = x1)
m∏
j=2

P (Xj = xj|X1 = x1, . . . , Xj−1 = xj−1)

= P (X1 = x1)
m∏
j=2

P (Xj = xj|Xj−1 = xj−1)

I The first equality is exact (by the chain rule).

I The second equality follows from the Markov assumption: for
all j = 2 . . .m,

P (Xj = xj |X1 = x1, . . . , Xj−1 = xj−1) = P (Xj = xj |Xj−1 = xj−1)

Homogeneous Markov Chains

I In a homogeneous Markov chain, we make an additional
assumption, that for j = 2 . . .m,

P (Xj = xj|Xj−1 = xj−1) = q(xj|xj−1)

where q(x′|x) is some function

I Idea behind this assumption: the transition probabilities do
not depend on the position in the Markov chain (do not
depend on the index j)

Markov Models

I Our model is then as follows:

p(x1, x2, . . . xm; θ) = q(x1)
m∏
j=2

q(xj|xj−1)

I Parameters in the model:

I q(x) for x = {1, 2, . . . , k}
Constraints: q(x) ≥ 0 and

∑k
x=1 q(x) = 1

I q(x′|x) for x = {1, 2, . . . , k} and x′ = {1, 2, . . . , k}
Constraints: q(x′|x) ≥ 0 and

∑k
x′=1 q(x

′|x) = 1

A Generative Story for Markov Models

I A sequence x1, x2, . . . , xm is generated by the following
process:

1. Pick x1 at random from the distribution q(x)

2. For j = 2 . . .m:

I Choose xj at random from the distribution q(x|xj−1)

Today’s Lecture

I Markov models

I Hidden Markov models

Modeling Pairs of Sequences

I In many applications, we need to model pairs of sequences

I Examples:

1. Part-of-speech tagging in natural language processing (assign
each word in a sentence to one of the categories noun, verb,
preposition etc.)

2. Speech recognition (map acoustic sequences to sequences of
words)

3. Computational biology: recover gene boundaries in DNA
sequences

Probabilistic Models for Sequence Pairs

I We have two sequences of random variables:
X1, X2, . . . , Xm and S1, S2, . . . , Sm

I Intuitively, each Xi corresponds to an “observation” and each
Si corresponds to an underlying “state” that generated the
observation. Assume that each Si is in {1, 2, . . . k}, and each
Xi is in {1, 2, . . . o}

I How do we model the joint distribution

P (X1 = x1, . . . , Xm = xm, S1 = s1, . . . , Sm = sm)

?

Hidden Markov Models (HMMs)

I In HMMs, we assume that:

P (X1 = x1, . . . , Xm = xm, S1 = s1, . . . , Sm = sm)

= P (S1 = s1)
m∏
j=2

P (Sj = sj|Sj−1 = sj−1)
m∏
j=1

P (Xj = xj|Sj = sj)

Independence Assumptions in HMMs
I By the chain rule, the following equality is exact:

P (X1 = x1, . . . , Xm = xm, S1 = s1, . . . , Sm = sm)

= P (S1 = s1, . . . , Sm = sm)×
P (X1 = x1, . . . , Xm = xm|S1 = s1, . . . , Sm = sm)

I Assumption 1: the state sequence forms a Markov chain

P (S1 = s1, . . . , Sm = sm) = P (S1 = s1)
m∏
j=2

P (Sj = sj|Sj−1 = sj−1)

Independence Assumptions in HMMs

I By the chain rule, the following equality is exact:

P (X1 = x1, . . . , Xm = xm|S1 = s1, . . . , Sm = sm)

=
m∏
j=1

P (Xj = xj|S1 = s1, . . . , Sm = sm, X1 = x1, . . . Xj−1 = xj)

I Assumption 2: each observation depends only on the
underlying state

P (Xj = xj|S1 = s1, . . . , Sm = sm, X1 = x1, . . . Xj−1 = xj)

= P (Xj = xj|Sj = sj)

The Model Form for HMMs

I The model takes the following form:

p(x1 . . . xm, s1 . . . sm; θ) = t(s1)
m∏
j=2

t(sj|sj−1)
m∏
j=1

e(xj|sj)

I Parameters in the model:

1. Initial state parameters t(s) for s ∈ {1, 2, . . . , k}

2. Transition parameters t(s′|s) for s, s′ ∈ {1, 2, . . . , k}

3. Emission parameters e(x|s) for s ∈ {1, 2, . . . , k} and
x ∈ {1, 2, . . . , o}

A Generative Story for Hidden Markov Models

I Sequence pairs s1, s2, . . . , sm and x1, x2, . . . , xm are generated
by the following process:

1. Pick s1 at random from the distribution t(s). Pick x1 from
the distribution e(x|s1)

2. For j = 2 . . .m:

I Choose sj at random from the distribution t(s|sj−1)

I Choose xj at random from the distribution e(x|sj)

Today’s Lecture

I More on Hidden Markov models:

I parameter estimation

I The Viterbi algorithm

Parameter Estimation with Fully Observed Data

I We’ll now discuss parameter estimates in the case of fully
observed data: for i = 1 . . . n, we have pairs of sequences xi,j
for j = 1 . . .m and si,j for j = 1 . . .m. (i.e., we have n
training examples, each of length m.)

Parameter Estimation: Transition Parameters

I Assume we have fully observed data: for i = 1 . . . n, we have
pairs of sequences xi,j for j = 1 . . .m and si,j for j = 1 . . .m

I Define count(i, s→ s′) to be the number of times state s′

follows state s in the i’th training example. More formally:

count(i, s→ s′) =
m−1∑
j=1

[[si,j = s ∧ si,j+1 = s′]]

(We define [[π]] to be 1 if π is true, 0 otherwise.)

I The maximum-likelihood estimates of transition probabilities
are then

t(s′|s) =
∑n

i=1 count(i, s→ s′)∑n
i=1

∑
s′ count(i, s→ s′)

Parameter Estimation: Emission Parameters

I Assume we have fully observed data: for i = 1 . . . n, we have
pairs of sequences xi,j for j = 1 . . .m and si,j for j = 1 . . .m

I Define count(i, s x) to be the number of times state s is
paired with emission x. More formally:

count(i, s x) =
m∑
j=1

[[si,j = s ∧ xi,j = x]]

I The maximum-likelihood estimates of emission probabilities
are then

e(x|s) =
∑n

i=1 count(i, s x)∑n
i=1

∑
x count(i, s x)

Parameter Estimation: Initial State Parameters

I Assume we have fully observed data: for i = 1 . . . n, we have
pairs of sequences xi,j for j = 1 . . .m and si,j for j = 1 . . .m

I Define count(i, s) to be 1 if state s is the initial state in the
sequence, and 0 otherwise:

count(i, s) = [[si,1 = s]]

I The maximum-likelihood estimates of initial state probabilities
are:

t(s) =

∑n
i=1 count(i, s)

n

Today’s Lecture

I Hidden Markov models:

I parameter estimation

I the Viterbi algorithm

The Viterbi Algorithm

I Goal: for a given input sequence x1, . . . , xm, find

arg max
s1,...,sm

p(x1 . . . xm, s1 . . . sm; θ)

I This is the most likely state sequence s1 . . . sm for the given
input sequence x1 . . . xm

The Viterbi Algorithm
I Goal: for a given input sequence x1, . . . , xm, find

arg max
s1,...,sm

p(x1 . . . xm, s1 . . . sm; θ)

I The Viterbi algorithm is a dynamic programming algorithm.
Basic data structure:

π[j, s]

will be a table entry that stores the maximum probability for
any state sequence ending in state s at position j. More
formally: π[1, s] = t(s)e(x1|s), and for j > 1,

π[j, s] = max
s1...sj−1

[
t(s1)e(x1|s1)

(
j−1∏
k=2

t(sk|sk−1)e(xk|sk)

)
t(s|sj−1)e(xj |s)

]

The Viterbi Algorithm

I Initialization: for s = 1 . . . k

π[1, s] = t(s)e(x1|s)

I For j = 2 . . .m, s = 1 . . . k:

π[j, s] = max
s′∈{1...k}

[π[j − 1, s′]× t(s|s′)× e(xj|s)]

I We then have

max
s1...sm

p(x1 . . . xm, s1 . . . sm; θ) = max
s
π[m, s]

I The algorithm runs in O(mk2) time

Viterbi as a Shortest-Path Algorithm

I The input sequence x1 . . . xm is fixed

I Have vertices in a graph labeled (j, s) for s ∈ {1 . . . k} and
j = 1 . . .m. In addition have a source vertex labeled 0

I For s ∈ {1 . . . k}, we have a directed edge from vertex 0 to
vertex (1, s), with weight t(s)e(x1|s)

I For each j = 2 . . .m, and s, s′ ∈ {1 . . . k}, have a directed
edge from (j − 1, s) to (j, s′) with weight t(s′|s)e(xj|s′) (the
weight of any path is the product of weights on edges in the
path)

I π[j, s] is the highest weight for any path from vertex 0 to
vertex (j, s)

The Viterbi Algorithm: Backpointers

I Initialization: for s = 1 . . . k

π[1, s] = t(s)e(x1|s)

I For j = 2 . . .m, s = 1 . . . k:

π[j, s] = max
s′∈{1...k}

[π[j − 1, s′]× t(s|s′)× e(xj|s)]

and

bp[j, s] = arg max
s′∈{1...k}

[π[j − 1, s′]× t(s|s′)× e(xj|s)]

I The bp entries are backpointers that will allow us to recover
the identity of the highest probability state sequence

Viterbi Algorithm: Backpointers (continued)
I Highest probability for any sequence of states is

max
s
π[m, s]

I To recover identity of highest-probability sequence:

sm = argmax
s
π[m, s]

and for j = m. . . 2,

sj−1 = bp[j, sj]

I The sequence of states s1 . . . sm is then

arg max
s1,...,sm

p(x1 . . . xm, s1 . . . sm; θ)

