Dual Decomposition for Natural Language Processing

Alexander M. Rush and Michael Collins

Decoding complexity

focus: decoding problem for natural language tasks

$$
y^{*}=\arg \max _{y} f(y)
$$

motivation:

- richer model structure often leads to improved accuracy
- exact decoding for complex models tends to be intractable

Decoding tasks

many common problems are intractable to decode exactly

high complexity

- combined parsing and part-of-speech tagging (Rush et al., 2010)
- "loopy" HMM part-of-speech tagging
- syntactic machine translation (Rush and Collins, 2011)

NP-Hard

- symmetric HMM alignment (DeNero and Macherey, 2011)
- phrase-based translation (Chang and Collins, 2011)
- higher-order non-projective dependency parsing (Koo et al., 2010)
in practice:
- approximate decoding methods (coarse-to-fine, beam search, cube pruning, gibbs sampling, belief propagation)
- approximate models (mean field, variational models)

Motivation

cannot hope to find exact algorithms (particularly when NP-Hard)
aim: develop decoding algorithms with formal guarantees
method:

- derive fast algorithms that provide certificates of optimality
- show that for practical instances, these algorithms often yield exact solutions
- provide strategies for improving solutions or finding approximate solutions when no certificate is found
dual decomposition helps us develop algorithms of this form

Lagrangian relaxation (Held and Karp, 1971)

important method from combinatorial optimization initially used for traveling salesman problems
optimal tour - NP-Hard

optimal 1-tree - easy (MST)

Dual decomposition (Komodakis et al., 2010; Lemaréchal, 2001)

goal: solve complicated optimization problem

$$
y^{*}=\arg \max _{y} f(y)
$$

method: decompose into subproblems, solve iteratively
benefit: can choose decomposition to provide "easy" subproblems aim for simple and efficient combinatorial algorithms

- dynamic programming
- minimum spanning tree
- shortest path
- min-cut
- bipartite match
- etc.

Related work

there are related methods used NLP with similar motivation related methods:

- belief propagation (particularly max-product) (Smith and Eisner, 2008)
- factored A* search (Klein and Manning, 2003)
- exact coarse-to-fine (Raphael, 2001)
aim to find exact solutions without exploring the full search space

Tutorial outline

focus:

- developing dual decomposition algorithms for new NLP tasks
- understanding formal guarantees of the algorithms
- extensions to improve exactness and select solutions

outline:

1. worked algorithm for combined parsing and tagging
2. important theorems and formal derivation
3. more examples from parsing, sequence labeling, MT
4. practical considerations for implementing dual decomposition
5. relationship to linear programming relaxations
6. further variations and advanced examples

1. Worked example

aim: walk through a dual decomposition algorithm for combined parsing and part-of-speech tagging

- introduce formal notation for parsing and tagging
- give assumptions necessary for decoding
- step through a run of the dual decomposition algorithm

Combined parsing and part-of-speech tagging

goal: find parse tree that optimizes

$$
\begin{aligned}
& \operatorname{score}(\mathrm{S} \rightarrow \mathrm{NP} \text { VP })+\operatorname{score}(\mathrm{VP} \rightarrow \mathrm{~V} \text { NP })+ \\
& \ldots+\operatorname{score}(\mathrm{N} \rightarrow \mathrm{~V})+\operatorname{score}(\mathrm{N} \rightarrow \text { United })+\ldots
\end{aligned}
$$

Constituency parsing

notation:

- \mathcal{Y} is set of constituency parses for input
- $y \in \mathcal{Y}$ is a valid parse
- $f(y)$ scores a parse tree
goal:

$$
\arg \max _{y \in \mathcal{Y}} f(y)
$$

example: a context-free grammar for constituency parsing

Part-of-speech tagging

notation:

- \mathcal{Z} is set of tag sequences for input
- $z \in \mathcal{Z}$ is a valid tag sequence
- $g(z)$ scores of a tag sequence
goal:

$$
\arg \max _{z \in \mathcal{Z}} g(z)
$$

example: an HMM for part-of speech tagging

Identifying tags

notation: identify the tag labels selected by each model

- $y(i, t)=1$ when parse y selects tag t at position i
- $z(i, t)=1$ when tag sequence z selects tag t at position i
example: a parse and tagging with $y(4, A)=1$ and $z(4, A)=1$

Z
y

Combined optimization

goal:

$$
\arg \max _{y \in \mathcal{Y}, z \in \mathcal{Z}} f(y)+g(z)
$$

such that for all $i=1 \ldots n, t \in \mathcal{T}$,

$$
y(i, t)=z(i, t)
$$

i.e. find the best parse and tagging pair that agree on tag labels equivalent formulation:

$$
\arg \max _{y \in \mathcal{Y}} f(y)+g(I(y))
$$

where $I: \mathcal{Y} \rightarrow \mathcal{Z}$ extracts the tag sequence from a parse tree

Dynamic programming intersection

can solve by solving the product of the two models

example:

- parsing model is a context-free grammar
- tagging model is a first-order HMM
- can solve as CFG and finite-state automata intersection

$$
\begin{aligned}
& \text { replace } \mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} \\
& \text { with } \\
& \mathrm{S}_{\mathrm{N}, \mathrm{~N}} \rightarrow \mathrm{NP}_{\mathrm{N}, \mathrm{~N}} \mathrm{VP}_{\mathrm{V}, \mathrm{~N}}
\end{aligned}
$$

Parsing assumption

the structure of \mathcal{Y} could be CFG, TAG, etc.
assumption: optimization with u can be solved efficiently

$$
\arg \max _{y \in \mathcal{Y}} f(y)+\sum_{i, t} u(i, t) y(i, t)
$$

generally benign since u can be incorporated into the structure of f example: CFG with rule scoring function h

$$
f(y)=\sum_{X \rightarrow Y Z \in y} h(X \rightarrow Y Z)+\sum_{(i, X) \in y} h\left(X \rightarrow w_{i}\right)
$$

where

$$
\begin{array}{ll}
\arg \max _{y \in \mathcal{Y}} & f(y)+\sum_{i, t} u(i, t) y(i, t)= \\
\arg \max _{y \in \mathcal{Y}} & \sum_{X \rightarrow Y} h(X \rightarrow Y Z)+\sum_{(i, X) \in y}\left(h\left(X \rightarrow w_{i}\right)+u(i, X)\right)
\end{array}
$$

Tagging assumption

we make a similar assumption for the set \mathcal{Z}
assumption: optimization with u can be solved efficiently

$$
\arg \max _{z \in \mathcal{Z}} g(z)-\sum_{i, t} u(i, t) z(i, t)
$$

example: HMM with scores for transitions T and observations O

$$
g(z)=\sum_{t \rightarrow t^{\prime} \in z} T\left(t \rightarrow t^{\prime}\right)+\sum_{(i, t) \in z} O\left(t \rightarrow w_{i}\right)
$$

where

$$
\begin{array}{ll}
\arg \max _{z \in \mathcal{Z}} & g(z)-\sum_{i, t} u(i, t) z(i, t)= \\
\arg \max _{z \in \mathcal{Z}} & \sum_{t \rightarrow t^{\prime} \in z} T\left(t \rightarrow t^{\prime}\right)+\sum_{(i, t) \in z}\left(O\left(t \rightarrow w_{i}\right)-u(i, t)\right)
\end{array}
$$

Dual decomposition algorithm

Set $u^{(1)}(i, t)=0$ for all $i, t \in \mathcal{T}$
For $k=1$ to K

$$
\begin{aligned}
& y^{(k)} \leftarrow \arg \max _{y \in \mathcal{Y}} f(y)+\sum_{i, t} u^{(k)}(i, t) y(i, t) \text { [Parsing] } \\
& z^{(k)} \leftarrow \arg \max _{z \in \mathcal{Z}} g(z)-\sum_{i, t} u^{(k)}(i, t) z(i, t) \text { [Tagging] }
\end{aligned}
$$

If $y^{(k)}(i, t)=z^{(k)}(i, t)$ for all $i, t \operatorname{Return}\left(y^{(k)}, z^{(k)}\right)$
Else $u^{(k+1)}(i, t) \leftarrow u^{(k)}(i, t)-\alpha_{k}\left(y^{(k)}(i, t)-z^{(k)}(i, t)\right)$

CKY Parsing
Penalties
$u(i, t)=0$ for all i, t

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)
$$

Viterbi Decoding

$$
\begin{gathered}
\text { United }_{1} \text { flies }_{2} \text { some }_{3} \text { large }_{4} \text { jet }_{5} \\
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
\end{gathered}
$$

Key

$$
\begin{array}{llll}
f(y) & \Leftarrow \text { CFG } & g(z) & \Leftarrow \text { HMM } \\
\mathcal{Y} & \Leftarrow & \mathcal{Z} & \Leftarrow \text { Parse Trees } \\
y(i, t)=1 & \text { if } y \text { Taggings }
\end{array}
$$

CKY Parsing

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)
$$

Viterbi Decoding

$$
\begin{gathered}
\text { United }_{1} \text { flies }_{2} \text { some }_{3} \text { large }_{4} \text { jet } \\
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
\end{gathered}
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow HMM	
\mathcal{Y}	\Leftarrow	${\multirow{10}{}}{ } }$	\Leftarrow Parse Trees	Taggings
$y(i, t)=1$	if y contains tag t at position i			

CKY Parsing

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)
$$

Viterbi Decoding

$$
\begin{aligned}
& \begin{array}{ccc}
\mathrm{N} \longrightarrow \mathrm{~V} \longrightarrow \mathrm{D} \longrightarrow \mathrm{~A} \longrightarrow \mathrm{~N} \\
\downarrow & \downarrow & \downarrow
\end{array} \\
& U^{U_{n i t e d}^{1}} \text { flies }_{2} \text { some }_{3} \text { large }_{4} \text { jet }_{5} \\
& z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
\end{aligned}
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow HMM
\mathcal{Y}	\Leftarrow Parse Trees	\mathcal{Z}	\Leftarrow Taggings
$y(i, t)=1$	if y contains tag t at position i		

CKY Parsing

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)
$$

Viterbi Decoding

$$
\begin{aligned}
& \begin{array}{ccc}
\mathrm{N} \longrightarrow \mathrm{~V} \longrightarrow \mathrm{D} \longrightarrow \mathrm{~A} \longrightarrow \mathrm{~N} \\
\downarrow & \downarrow & \downarrow
\end{array} \\
& \text { United }_{1} \text { flies }_{2} \text { some }_{3} \text { large }_{4} \text { jet }_{5} \\
& z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
\end{aligned}
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow HMM
\mathcal{Y}	\Leftarrow Parse Trees	\mathcal{Z}	\Leftarrow Taggings
$y(i, t)=1$	if y contains tag t at position i		

CKY Parsing

Viterbi Decoding

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow HMM	
\mathcal{Y}	\Leftarrow	Parse Trees	\mathcal{Z}	\Leftarrow
$y(i, t)=1$	if y Taggings			

CKY Parsing

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)
$$

Viterbi Decoding

Penalties

$$
\begin{array}{lr}
u(i, t)=0 \text { for all } i, t \\
\text { Iteration } 1 \\
\hline u(1, A) & -1 \\
u(1, N) & 1 \\
u(2, N) & -1 \\
u(2, V) & 1 \\
u(5, V) & -1 \\
u(5, N) & 1
\end{array}
$$

United $_{1}$ flies $_{2}$ some $_{3}$ large $_{4}$ jet $_{5}$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow HMM	
\mathcal{Y}	\Leftarrow	}{}	\Leftarrow	Tagge Trees
$y(i, t)=1$	if y contains tag t at position i			

CKY Parsing

Viterbi Decoding

Penalties

$u(i, t)=0$ for all i, t	
Iteration 1	
$u(1, A)$	-1
$u(1, N)$	1
$u(2, N)$	-1
$u(2, V)$	1
$u(5, V)$	-1
$u(5, N)$	1

$$
u(2, N) \quad-1
$$

$$
u(2, V) \quad 1
$$

$$
u(5, V) \quad-1
$$

$$
u(5, N) \quad 1
$$

United $_{1}$ flies $_{2}$ some $_{3}$ large $_{4}$ jet $_{5}$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow HMM	
\mathcal{Y}	\Leftarrow	${\multirow{10}{}}{\Leftarrow} }$	\Leftarrow Tarse Trees	
$y(i, t)=1$	if y contains tag t at position i			

CKY Parsing

Viterbi Decoding

$$
\begin{aligned}
& \begin{array}{cc}
\mathrm{A} \longrightarrow \mathrm{~N} \longrightarrow \mathrm{D} \longrightarrow \mathrm{~A} \longrightarrow \mathrm{~N} \\
\downarrow & \downarrow \\
\downarrow & \downarrow
\end{array} \\
& \text { United }_{1} \text { flies }_{2} \text { some }_{3} \text { large }_{4} \text { jet }_{5} \\
& z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
\end{aligned}
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow HMM	
\mathcal{Y}	\Leftarrow	Parse Trees	\mathcal{Z}	\Leftarrow
$y(i, t)=1$	if y Taggings			

CKY Parsing

Viterbi Decoding

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
$$

Key

$f(y)$	\Leftarrow	CFG	$g(z)$	\Leftarrow	HMM
\mathcal{Y}	\Leftarrow	Parse Trees	\mathcal{Z}	\Leftarrow	Taggings
$y(i, t)=1$	if	y contains t			

CKY Parsing
Penalties

$$
\begin{array}{lr}
u(i, t)=0 \text { for all } i, t \\
\text { Iteration } 1 \\
\hline u(1, A) & -1 \\
u(1, N) & 1 \\
u(2, N) & -1 \\
u(2, V) & 1 \\
u(5, V) & -1 \\
u(5, N) & 1
\end{array}
$$

Viterbi Decoding

$$
\begin{gathered}
\text { United }_{1} \text { flies }_{2} \text { some }_{3} \text { large }_{4} \quad \text { jet } \\
z^{*} \\
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
\end{gathered}
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow HMM	
\mathcal{Y}	\Leftarrow	Parse Trees	\mathcal{Z}	\Leftarrow
$y(i, t)=1$	if y Taggings			

CKY Parsing

Viterbi Decoding

$$
\begin{gathered}
\text { United }_{1} \text { flies }_{2} \text { some }_{3} \text { large }_{4} \text { jet } \\
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
\end{gathered}
$$

Key

$f(y)$	\Leftarrow MFG	$g(z)$	\Leftarrow HMM	
\mathcal{Y}	\Leftarrow	Parse Trees	\mathcal{Z}	\Leftarrow
$y(i, t)=1$	if y agings			

CKY Parsing

Viterbi Decoding

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow HMM	
\mathcal{Y}	\Leftarrow	${\multirow{10}{}}{\Leftarrow} }$	\Leftarrow Tarse Trees	
$y(i, t)=1$	if y contains tag t at position i			

CKY Parsing

Viterbi Decoding

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
$$

Key

$f(y)$	\Leftarrow MFG	$g(z)$	\Leftarrow
\mathcal{Y}	\Leftarrow	\mathcal{Z}	\Leftarrow Parse Trees
$y(i, t)=1$	if y contains tag t at position i		

Penalties

$$
\begin{array}{lr}
u(i, t)=0 \text { for all } i, t \\
\text { Iteration } 1 \\
\hline u(1, A) & -1 \\
u(1, N) & 1 \\
u(2, N) & -1 \\
u(2, V) & 1 \\
u(5, V) & -1 \\
u(5, N) & 1
\end{array}
$$

\[

\]

$$
y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)+g(y)
$$

Main theorem

theorem: if at any iteration, for all $i, t \in \mathcal{T}$

$$
y^{(k)}(i, t)=z^{(k)}(i, t)
$$

then $\left(y^{(k)}, z^{(k)}\right)$ is the global optimum
proof: focus of the next section

Convergence

2. Formal properties

aim: formal derivation of the algorithm given in the previous section

- derive Lagrangian dual
- prove three properties
- upper bound
- convergence
- optimality
- describe subgradient method

Lagrangian

goal:

$$
\arg \max _{y \in \mathcal{Y}, z \in \mathcal{Z}} f(y)+g(z) \text { such that } y(i, t)=z(i, t)
$$

Lagrangian:

$$
L(u, y, z)=f(y)+g(z)+\sum_{i, t} u(i, t)(y(i, t)-z(i, t))
$$

redistribute terms

$$
L(u, y, z)=\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)+\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
$$

Lagrangian dual

Lagrangian:

$L(u, y, z)=\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)+\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)$
Lagrangian dual:

$$
\begin{aligned}
L(u)= & \max _{y \in \mathcal{Y}, z \in \mathcal{Z}} L(u, y, z) \\
= & \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)+ \\
& \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
\end{aligned}
$$

Theorem 1. Upper bound

define:

- y^{*}, z^{*} is the optimal combined parsing and tagging solution with $y^{*}(i, t)=z^{*}(i, t)$ for all i, t
theorem: for any value of u

$$
L(u) \geq f\left(y^{*}\right)+g\left(z^{*}\right)
$$

$L(u)$ provides an upper bound on the score of the optimal solution note: upper bound may be useful as input to branch and bound or A* search

Theorem 1. Upper bound (proof)

theorem: for any value of $u, L(u) \geq f\left(y^{*}\right)+g\left(z^{*}\right)$ proof:

$$
\begin{align*}
L(u) & =\max _{y \in \mathcal{Y}, z \in \mathcal{Z}} L(u, y, z) \tag{1}\\
& \geq \max _{y \in \mathcal{Y}, z \in \mathcal{Z}: y=z} L(u, y, z) \tag{2}\\
& =\max _{y \in \mathcal{Y}, z \in \mathcal{Z}: y=z} f(y)+g(z) \tag{3}\\
& =f\left(y^{*}\right)+g\left(z^{*}\right) \tag{4}
\end{align*}
$$

Formal algorithm (reminder)

Set $u^{(1)}(i, t)=0$ for all $i, t \in \mathcal{T}$
For $k=1$ to K

$$
\begin{aligned}
& y^{(k)} \leftarrow \arg \max _{y \in \mathcal{Y}} f(y)+\sum_{i, t} u^{(k)}(i, t) y(i, t) \text { [Parsing] } \\
& z^{(k)} \leftarrow \arg \max _{z \in \mathcal{Z}} g(z)-\sum_{i, t} u^{(k)}(i, t) z(i, t) \text { [Tagging] } \\
& \text { If } y^{(k)}(i, t)=z^{(k)}(i, t) \text { for all } i, t \text { Return }\left(y^{(k)}, z^{(k)}\right)
\end{aligned}
$$

Else $u^{(k+1)}(i, t) \leftarrow u^{(k)}(i, t)-\alpha_{k}\left(y^{(k)}(i, t)-z^{(k)}(i, t)\right)$

Theorem 2. Convergence

notation:

- $u^{(k+1)}(i, t) \leftarrow u^{(k)}(i, t)+\alpha_{k}\left(y^{(k)}(i, t)-z^{(k)}(i, t)\right)$ is update
- $u^{(k)}$ is the penalty vector at iteration k
- α_{k} is the update rate at iteration k
theorem: for any sequence $\alpha^{1}, \alpha^{2}, \alpha^{3}, \ldots$ such that

$$
\lim _{t \rightarrow \infty} \alpha^{t}=0 \quad \text { and } \quad \sum_{t=1}^{\infty} \alpha^{t}=\infty
$$

we have

$$
\lim _{t \rightarrow \infty} L\left(u^{t}\right)=\min _{u} L(u)
$$

i.e. the algorithm converges to the tightest possible upper bound proof: by subgradient convergence (next section)

Dual solutions

define:

- for any value of u

$$
y_{u}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)
$$

and

$$
z_{u}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
$$

- y_{u} and z_{u} are the dual solutions for a given u

Theorem 3. Optimality

theorem: if there exists u such that

$$
y_{u}(i, t)=z_{u}(i, t)
$$

for all i, t then

$$
f\left(y_{u}\right)+g\left(z_{u}\right)=f\left(y^{*}\right)+g\left(z^{*}\right)
$$

i.e. if the dual solutions agree, we have an optimal solution

$$
\left(y_{u}, z_{u}\right)
$$

Theorem 3. Optimality (proof)

theorem: if u such that $y_{u}(i, t)=z_{u}(i, t)$ for all i, t then

$$
f\left(y_{u}\right)+g\left(z_{u}\right)=f\left(y^{*}\right)+g\left(z^{*}\right)
$$

proof: by the definitions of y_{u} and z_{u}

$$
\begin{aligned}
L(u) & =f\left(y_{u}\right)+g\left(z_{u}\right)+\sum_{i, t} u(i, t)\left(y_{u}(i, t)-z_{u}(i, t)\right) \\
& =f\left(y_{u}\right)+g\left(z_{u}\right)
\end{aligned}
$$

since $L(u) \geq f\left(y^{*}\right)+g\left(z^{*}\right)$ for all values of u

$$
f\left(y_{u}\right)+g\left(z_{u}\right) \geq f\left(y^{*}\right)+g\left(z^{*}\right)
$$

but y^{*} and z^{*} are optimal

$$
f\left(y_{u}\right)+g\left(z_{u}\right) \leq f\left(y^{*}\right)+g\left(z^{*}\right)
$$

Dual optimization

Lagrangian dual:

$$
\begin{aligned}
L(u)= & \max _{y \in \mathcal{Y}, z \in \mathcal{Z}} L(u, y, z) \\
= & \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)+ \\
& \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
\end{aligned}
$$

goal: dual problem is to find the tightest upper bound

$$
\min _{u} L(u)
$$

Dual subgradient

$$
L(u)=\max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)+\max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, t} u(i, t) z(i, t)\right)
$$

properties:

- $\mathrm{L}(\mathrm{u})$ is convex in u (no local minima)
- $\mathrm{L}(\mathrm{u})$ is not differentiable (because of max operator)
handle non-differentiability by using subgradient descent define: a subgradient of $L(u)$ at u is a vector g_{u} such that for all v

$$
L(v) \geq L(u)+g_{u} \cdot(v-u)
$$

Subgradient algorithm

$$
L(u)=\max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)+\max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, t) z(i, t)\right)
$$

recall, y_{u} and z_{u} are the argmax's of the two terms
subgradient:

$$
g_{u}(i, t)=y_{u}(i, t)-z_{u}(i, t)
$$

subgradient descent: move along the subgradient

$$
u^{\prime}(i, t)=u(i, t)-\alpha\left(y_{u}(i, t)-z_{u}(i, t)\right)
$$

guaranteed to find a minimum with conditions given earlier for α

3. More examples

aim: demonstrate similar algorithms that can be applied to other decoding applications

- context-free parsing combined with dependency parsing
- corpus-level part-of-speech tagging
- combined translation alignment

Combined constituency and dependency parsing (Rush et al., 2010)

setup: assume separate models trained for constituency and dependency parsing
problem: find constituency parse that maximizes the sum of the two models

example:

- combine lexicalized CFG with second-order dependency parser

Lexicalized constituency parsing

notation:

- \mathcal{Y} is set of lexicalized constituency parses for input
- $y \in \mathcal{Y}$ is a valid parse
- $f(y)$ scores a parse tree
goal:

$$
\arg \max _{y \in \mathcal{Y}} f(y)
$$

example: a lexicalized context-free grammar

Dependency parsing

define:

- \mathcal{Z} is set of dependency parses for input
- $z \in \mathcal{Z}$ is a valid dependency parse
- $g(z)$ scores a dependency parse

example:

Identifying dependencies

notation: identify the dependencies selected by each model

- $y(i, j)=1$ when word i modifies of word j in constituency parse y
- $z(i, j)=1$ when word i modifies of word j in dependency parse z
example: a constituency and dependency parse with $y(3,5)=1$ and $z(3,5)=1$

z

y

Combined optimization

goal:

$$
\arg \max _{y \in \mathcal{Y}, z \in \mathcal{Z}} f(y)+g(z)
$$

such that for all $i=1 \ldots n, j=0 \ldots n$,

$$
y(i, j)=z(i, j)
$$

CKY Parsing

Penalties

$$
u(i, j)=0 \text { for all } i, j
$$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

Dependency Parsing

* $_{0}$ United $_{1}$ flies $_{2}$ some $_{3}$ large $_{4}$ jet $_{5}$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$$
\begin{array}{lllll}
f(y) & \Leftarrow \text { CFG } & g(z) & \Leftarrow & \text { Dependency Model } \\
\mathcal{Y} & \Leftarrow & \mathcal{Z} & \Leftarrow & \text { Dependency Trees } \\
y(i, j)=1 & \text { if } y \text { contains dependency } i, j & & &
\end{array}
$$

CKY Parsing

Dependency Parsing

* $_{0}$ United $_{1}$ flies $_{2}$ some $_{3}$ large $_{4}$ jet $_{5}$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow MFG	$g(z)$	\Leftarrow	Dependency Model
\mathcal{Y}	\Leftarrow	\mathcal{Z}	\Leftarrow	Dependency Trees
$y(i, j)=1$	if y contains dependency i, j			

CKY Parsing

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

Dependency Parsing

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow	Dependency Model
\mathcal{Y}	\Leftarrow	Parse Trees	${\multirow{10}{}}{ } }$	\Leftarrow
$y(i, j)=1$	if y Dependency Trees			

CKY Parsing

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

Dependency Parsing

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow	Dependency Model
\mathcal{Y}	\Leftarrow	Parse Trees	${\multirow{10}{}}{ } }$	$=$ Dependency Trees
$y(i, j)=1$	if y contains dependency i, j			

CKY Parsing

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

Dependency Parsing

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow	Dependency Model
\mathcal{Y}	\Leftarrow	Parse Trees	${\multirow{10}{}}{ } }$	$=$ Dependency Trees
$y(i, j)=1$	if y contains dependency i, j			

CKY Parsing

Penalties

$$
\begin{aligned}
& u(i, j)=0 \text { for all } i, j \\
& \text { Iteration } 1 \\
& \hline u(2,3) \\
& u(5,3)
\end{aligned}
$$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

Dependency Parsing

* $_{0}$ United $_{1}$ flies $_{2}$ some $_{3}$ large $_{4}$ jet $_{5}$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow	Dependency Model
\mathcal{Y}	\Leftarrow Parse Trees	\Leftarrow	Dependency Trees	
$y(i, j)=1$	if y contains dependency i, j			

CKY Parsing

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

Penalties

$$
\begin{aligned}
& u(i, j)=0 \text { for all } i, j \\
& \text { Iteration } 1 \\
& \hline u(2,3) \\
& u(5,3)
\end{aligned}
$$

Dependency Parsing

$*_{0}$ United $_{1}$ flies $_{2}$ some $_{3}$ large $_{4}$ jet $_{5}$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow MFG	$g(z)$	\Leftarrow	Dependency Model
\mathcal{Y}	\Leftarrow	\mathcal{Z}	\Leftarrow	Dependency Trees Trees

CKY Parsing

Penalties

$$
\begin{aligned}
& u(i, j)=0 \text { for all } i, j \\
& \text { Iteration } 1 \\
& \hline u(2,3) \\
& u(5,3)
\end{aligned}
$$

Dependency Parsing

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow CFG	$g(z)$	\Leftarrow	Dependency Model
\mathcal{Y}	\Leftarrow	\mathcal{Z}	\Leftarrow	Parse Trees
$y(i, j)=1$	if y contains dependency i, j			

CKY Parsing

Dependency Parsing

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow MFG	$g(z)$	\Leftarrow	Dependency Model
\mathcal{Y}	\Leftarrow	Parse Trees	${\multirow{10}{}}{ } }$	\Leftarrow
$y(i, j)=1$	if y Dependency Trees			

Convergence

Integrated Constituency and Dependency Parsing: Accuracy

F_{1} Score

- Collins (1997) Model 1
- Fixed, First-best Dependencies from Koo (2008)
- Dual Decomposition

Corpus-level tagging

setup: given a corpus of sentences and a trained sentence-level tagging model
problem: find best tagging for each sentence, while at the same time enforcing inter-sentence soft constraints

example:

- test-time decoding with a trigram tagger
- constraint that each word type prefer a single POS tag

Corpus-level tagging

Sentence-level decoding

notation:

- \mathcal{Y}_{i} is set of tag sequences for input sentence i
- $\mathcal{Y}=\mathcal{Y}_{1} \times \ldots \times \mathcal{Y}_{m}$ is set of tag sequences for the input corpus
- $Y \in \mathcal{Y}$ is a valid tag sequence for the corpus
- $F(Y)=\sum_{i} f\left(Y_{i}\right)$ is the score for tagging the whole corpus
goal:

$$
\arg \max _{Y \in \mathcal{Y}} F(Y)
$$

example: decode each sentence with a trigram tagger

Inter-sentence constraints

notation:

- \mathcal{Z} is set of possible assignments of tags to word types
- $z \in \mathcal{Z}$ is a valid tag assignment
- $g(z)$ is a scoring function for assignments to word types
example: an MRF model that encourages words of the same type to choose the same tag

$$
g\left(z_{1}\right)>g\left(z_{2}\right)
$$

Identifying word tags

notation: identify the tag labels selected by each model

- $Y_{s}(i, t)=1$ when the tagger for sentence s at position i selects tag t
- $z(s, i, t)=1$ when the constraint assigns at sentence s position i the tag t
example: a parse and tagging with $Y_{1}(5, N)=1$ and $z(1,5, N)=1$

Combined optimization

goal:

$$
\arg \max _{Y \in \mathcal{Y}, z \in \mathcal{Z}} F(Y)+g(z)
$$

such that for all $s=1 \ldots m, i=1 \ldots n, t \in \mathcal{T}$,

$$
Y_{s}(i, t)=z(s, i, t)
$$

Penalties

Tagging

$$
u(s, i, t)=0 \text { for all } s, i, t
$$

MRF

Key

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow MRF	
\mathcal{Y}	\Leftarrow	Sentence-level tagging	\mathcal{Z}	\Leftarrow
$Y_{s}(i, t)=1$	if	sentence s has tag t at position i		

Penalties

Tagging

$$
u(s, i, t)=0 \text { for all } s, i, t
$$

N	(V)	(P)	(A)	(N)
English	is	my	first	language
P	(V)	(A)	(N)	(R)
He	studies	language	arts	now
N	V	(P)	(N)	(N)
Language	makes	us	human	beings

MRF

Key

$F(Y)$	\Leftarrow	Tagging model	$g(z)$	\Leftarrow
\mathcal{Y}	\Leftarrow	MRF		
$Y_{s}(i, t)=1$	if	sentence-level tagging	\mathcal{Z}	\Leftarrow
senter-sentence constraints				

Penalties

Tagging

(N)	(V)	(P)	(A)	(N)
English	is	my	first	language
P	V	(A)	(N)	(R)
He	studies	language	arts	now
N	V	P	(N)	(N)
Language	makes	us	human	beings

MRF

Key

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow MRF
\mathcal{Y}	\Leftarrow Sentence-level tagging	\mathcal{Z}	\Leftarrow Inter-sentence constraints
$Y_{s}(i, t)=1$	if	sentence s has tag t at position i	

Penalties

Tagging						$u(s, i, t)=0$ for all s, i, t
	N	(V)	(P)	(A)	(N)	
	English	is	my	first	language	
	P	V	(A)	(N)	(R)	
	He	studies	language	arts	now	
	(N)	V	(P)	(N)	(N)	
	Language	makes	us	human	beings	

MRF

Key

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow MRF
\mathcal{Y}	\Leftarrow Sentence-level tagging	\mathcal{Z}	\Leftarrow Inter-sentence constraints
$Y_{s}(i, t)=1$	if	sentence s has tag t at position i	

MRF

Key

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow MRF
\mathcal{Y}	\Leftarrow Sentence-level tagging	\mathcal{Z}	\Leftarrow Inter-sentence constraints
$Y_{s}(i, t)=1$	if	sentence s has tag t at position i	

Penalties
Tagging

$$
\begin{gathered}
u(s, i, t)=0 \text { for all } s, i, t \\
\begin{array}{cr}
\text { Iteration } 1 \\
\hline u(1,5, N) & -1 \\
u(1,5, A) & 1 \\
u(3,1, N) & -1 \\
u(3,1, A) & 1
\end{array}
\end{gathered}
$$

MRF

Key

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow	MRF
\mathcal{Y}	\Leftarrow	Sentence-level tagging	\mathcal{Z}	\Leftarrow
$Y_{s}(i, t)=1$	if	sentence s has tag t at position i		

Penalties

Tagging

(N)	(V)	(P)	(A)	(N)
English	is	my	first	language
(P)	v	(A)	(N)	(R)
He	studies	language	arts	now
	(V)	(P)	(N)	(N)
Language	makes	us	human	beings

$$
\begin{aligned}
& u(s, i, t)=0 \text { for all } s, i, t \\
& \text { Iteration } 1 \\
& \hline u(1,5, N) \\
& \hline u(1,5, A) \\
& u(3,1, N) \\
& u(3,1, A) \\
& u(1
\end{aligned}
$$

beings

MRF

Key

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow MRF	
\mathcal{Y}	\Leftarrow	Sentence-level tagging	\mathcal{Z}	\Leftarrow
$Y_{s}(i, t)=1$	if	sentencer-sentence constraints s has tag t at position i		

Tagging

N	(V)	(P)	(A)	(N)
English	is	my	first	language
P	(V)	(A)	(N)	(R)
He	studies	language	arts	now
N	V	(P)	(N)	(N)
Language	makes	us	human	beings

beings

Penalties

$$
\begin{aligned}
& u(s, i, t)=0 \text { for all } s, i, t \\
& \text { Iteration } 1 \\
& \hline u(1,5, N) \\
& \hline u(1,5, A) \\
& u(3,1, N) \\
& u(3,1, A) \\
& u(1
\end{aligned}
$$

MRF

language language language

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow MRF	
\mathcal{Y}	\Leftarrow Sentence-level tagging	\mathcal{Z}	\Leftarrow	Inter-sentence constraints
$Y_{s}(i, t)=1$	if	sentence s has tag t at position i		

Tagging

N	(V)	(P)	(A)	(N)
English	is	my	first	language
P	(V)	(A)	(N)	(R)
He	studies	language	arts	now
N	V	(P)	(N)	(N)
Language	makes	us	human	beings

beings

Penalties

$$
\begin{aligned}
& u(s, i, t)=0 \text { for all } s, i, t \\
& \text { Iteration } 1 \\
& \hline u(1,5, N) \\
& \hline u(1,5, A) \\
& u(3,1, N) \\
& u(3,1, A) \\
& u(1
\end{aligned}
$$

MRF

language language language

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow MRF	
\mathcal{Y}	\Leftarrow Sentence-level tagging	\mathcal{Z}	\Leftarrow	Inter-sentence constraints
$Y_{s}(i, t)=1$	if	sentence s has tag t at position i		

Tagging

N	(V)	(P)	(A)	(N)
English	is	my	first	language
P	(V)	(A)	(N)	(R)
He	studies	language	arts	now
N	V	(P)	(N)	(N)
Language	makes	us	human	beings

language language language

Penalties

$u(s, i, t)=0$ for all s, i, t	Iteration 1
$u(1,5, N)-1$	

$u(1,5, A) \quad 1$
$u(3,1, N) \quad-1$
$u(3,1, A) \quad 1$

Iteration 2	
$u(1,5, N)$	-1

$u(1,5, A) \quad 1$
$u(3,1, N) \quad-1$
$u(3,1, A) \quad 1$
$u(2,3, N) \quad 1$
$u(2,3, A) \quad-1$

Key

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow MRF
\mathcal{Y}	\Leftarrow Sentence-level tagging	\mathcal{Z}	\Leftarrow Inter-sentence constraints
$Y_{s}(i, t)=1$	if	sentence s has tag t at position i	

Tagging

N	(V)	(P)	(A)	(N)
English	is	my	first	language
P	(V)	(N)	(N)	(R)
He	studies	language	arts	now
N	V	P	(N)	(N)
Language	makes	us	human	beings

Penalties

$u(s, i, t)=0$ for all s, i, t | Iteration 1 | |
| :--- | :--- |
| $u(1,5, N)$ | -1 |

$u(1,5, A) \quad 1$
$u(3,1, N) \quad-1$
$u(3,1, A) \quad 1$

Iteration 2	
$u(1,5, N)$	-1

$u(1,5, A) \quad 1$
$u(3,1, N) \quad-1$
$u(3,1, A) \quad 1$
$u(2,3, N) \quad 1$
$u(2,3, A) \quad-1$

Key

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow	MRF
\mathcal{Y}	\Leftarrow	Sentence-level tagging	\mathcal{Z}	\Leftarrow
$Y_{s}(i, t)=1$	if	senter-sentence constraints s has tag t at position i		

Tagging

N	(V)	(P)	(A)	(N)
English	is	my	first	language
P	(V)	(N)	(N)	(R)
He	studies	language	arts	now
N	V	P	(N)	(N)
Language	makes	us	human	beings

language language language

Penalties

$u(s, i, t)=0$ for all s, i, t | Iteration 1 | |
| :--- | :--- |
| $u(1,5, N)$ | -1 |

$u(1,5, A) \quad 1$
$u(3,1, N) \quad-1$
$u(3,1, A) \quad 1$

Iteration 2	
$u(1,5, N)$	-1

$u(1,5, A) \quad 1$
$u(3,1, N) \quad-1$
$u(3,1, A) \quad 1$
$u(2,3, N) \quad 1$
$u(2,3, A) \quad-1$

Key

$F(Y)$	\Leftarrow Tagging model	$g(z)$	\Leftarrow MRF
\mathcal{Y}	\Leftarrow Sentence-level tagging	\mathcal{Z}	\Leftarrow Inter-sentence constraints
$Y_{s}(i, t)=1$	if	sentence s has tag t at position i	

Combined alignment (DeNero and Macherey, 2011)

setup: assume separate models trained for English-to-French and French-to-English alignment
problem: find an alignment that maximizes the score of both models

example:

- HMM models for both directional alignments (assume correct alignment is one-to-one for simplicity)

English-to-French alignment

define:

- \mathcal{Y} is set of all possible English-to-French alignments
- $y \in \mathcal{Y}$ is a valid alignment
- $f(y)$ scores of the alignment
example: HMM alignment

French-to-English alignment

define:

- \mathcal{Z} is set of all possible French-to-English alignments
- $z \in \mathcal{Z}$ is a valid alignment
- $g(z)$ scores of an alignment
example: HMM alignment

Identifying word alignments

notation: identify the tag labels selected by each model

- $y(i, j)=1$ when e-to-f alignment y selects French word i to align with English word j
- $z(i, j)=1$ when f-to-e alignment z selects French word i to align with English word j
example: two HMM alignment models with $y(6,5)=1$ and $z(6,5)=1$

Combined optimization

goal:

$$
\arg \max _{y \in \mathcal{Y}, z \in \mathcal{Z}} f(y)+g(z)
$$

such that for all $i=1 \ldots n, j=1 \ldots n$,

$$
y(i, j)=z(i, j)
$$

English-to-French

Penalties

$$
u(i, j)=0 \text { for all } i, j
$$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

French-to-English

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow HMM Alignment	$g(z)$	\Leftarrow	HMM Alignment
\mathcal{Y}	\Leftarrow	English-to-French model	\mathcal{Z}	\Leftarrow
$y(i, j)=1$	if	French word i aligns to English word j		

English-to-French

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

French-to-English

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow HMM Alignment	$g(z)$	\Leftarrow	HMM Alignment
\mathcal{Y}	\Leftarrow	English-to-French model	\mathcal{Z}	\Leftarrow
$y(i, j)=1$	if	French word i aligns to English word j		

English-to-French

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

French-to-English

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow HMM Alignment	$g(z)$	\Leftarrow	HMM Alignment
\mathcal{Y}	\Leftarrow	English-to-French model	\mathcal{Z}	\Leftarrow
$y(i, j)=1$	if	French word i aligns to English word j		

English-to-French

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

French-to-English

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow HMM Alignment	$g(z)$	\Leftarrow	HMM Alignment
\mathcal{Y}	\Leftarrow	English-to-French model	\mathcal{Z}	\Leftarrow
$y(i, j)=1$	if	French word i aligns to English word j		

English-to-French

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

Penalties

$$
\begin{array}{lr}
u(i, j)=0 \text { for all } i, j \\
\begin{array}{lr}
\text { Iteration } 1 \\
\hline u(3,2) & -1 \\
u(2,2) & 1 \\
u(2,3) & -1 \\
u(3,3) & 1
\end{array}
\end{array}
$$

French-to-English

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow	HMM Alignment	$g(z)$	\Leftarrow	HMM Alignment
\mathcal{Y}	\Leftarrow	English-to-French model	\mathcal{Z}	\Leftarrow	French-to-English model
$y(i, j)=1$	if	French word i aligns to English word j			

English-to-French

Penalties

$$
\begin{array}{lr}
u(i, j)=0 \text { for all } i, j \\
\text { Iteration } 1 \\
\hline u(3,2) & -1 \\
u(2,2) & 1 \\
u(2,3) & -1 \\
u(3,3) & 1
\end{array}
$$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

French-to-English

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow HMM Alignment	$g(z)$	\Leftarrow	HMM Alignment
\mathcal{Y}	\Leftarrow	English-to-French model	\mathcal{Z}	\Leftarrow
$y(i, j)=1$	if	French word i aligns to English word j		

English-to-French

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

French-to-English

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Penalties

$u(i, j)=0$ for all i, j Iteration 1	
$u(3,2)$	-1
$u(2,2)$	1
$u(2,3)$	-1
$u(3,3)$	1

$$
u(3,3) \quad 1
$$

Key

$f(y)$	\Leftarrow	HMM Alignment	$g(z)$	\Leftarrow	HMM Alignment
\mathcal{Y}	\Leftarrow	English-to-French model	\mathcal{Z}	\Leftarrow	French-to-English model
$y(i, j)=1$	if	French word i aligns to English word j			

English-to-French

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

Penalties

$u(i, j)=0$ for all i, j Iteration 1	
$u(3,2)$	-1
$u(2,2)$	1
$u(2,3)$	-1
$u(3,3)$	1

French-to-English

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow	HMM Alignment	$g(z)$	\Leftarrow	HMM Alignment
\mathcal{Y}	\Leftarrow	English-to-French model	\mathcal{Z}	\Leftarrow	French-to-English model
$y(i, j)=1$	if	French word i aligns to English word j			

English-to-French

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

Penalties

$u(i, j)=0$ for all i, j Iteration 1	
$u(3,2)$	-1
$u(2,2)$	1
$u(2,3)$	-1
$u(3,3)$	1

French-to-English

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow	HMM Alignment	$g(z)$	\Leftarrow	HMM Alignment
\mathcal{Y}	\Leftarrow	English-to-French model	\mathcal{Z}	\Leftarrow	French-to-English model
$y(i, j)=1$	if	French word i aligns to English word j			

English-to-French

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, j} u(i, j) y(i, j)\right)
$$

Penalties

$u(i, j)=0$ for all i, j Iteration 1	
$u(3,2)$	-1
$u(2,2)$	1
$u(2,3)$	-1
$u(3,3)$	1

French-to-English

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(g(z)-\sum_{i, j} u(i, j) z(i, j)\right)
$$

Key

$f(y)$	\Leftarrow	HMM Alignment	$g(z)$	\Leftarrow	HMM Alignment
\mathcal{Y}	\Leftarrow	English-to-French model	\mathcal{Z}	\Leftarrow	French-to-English model
$y(i, j)=1$	if	French word i aligns to English word j			

4. Practical issues

aim: overview of practical dual decomposition techniques

- tracking the progress of the algorithm
- choice of update rate α_{k}
- lazy update of dual solutions
- extracting solutions if algorithm does not converge

Optimization tracking

at each stage of the algorithm there are several useful values track:

- $y^{(k)}, z^{(k)}$ are current dual solutions
- $L\left(u^{(k)}\right)$ is the current dual value
- $y^{(k)}, I\left(y^{(k)}\right)$ is a potential primal feasible solution
- $f\left(y^{(k)}\right)+g\left(l\left(y^{(k)}\right)\right)$ is the potential primal value

example run from syntactic machine translation (later in talk)
- current primal

$$
f\left(y^{(k)}\right)+g\left(I\left(y^{(k)}\right)\right)
$$

- current dual

$$
L\left(u^{(k)}\right)
$$

Optimization progress

useful signals:

- $L\left(u^{(k)}\right)-L\left(u^{(k-1)}\right)$ is the dual change (may be positive)
- $\min _{k} L\left(u^{(k)}\right)$ is the best dual value (tightest upper bound)
- $\max _{k} f\left(y^{(k)}\right)+g\left(I\left(y^{(k)}\right)\right)$ is the best primal value
the optimal value must be between the best dual and primal values

Progress example

best primal

$$
\max _{k} f\left(y^{(k)}\right)+g\left(I\left(y^{(k)}\right)\right)
$$

best dual

$$
\min _{k} L\left(u^{(k)}\right)
$$

$$
\begin{aligned}
& \text { gap } \\
& \qquad \begin{array}{l}
\min _{k} L\left(u^{k}\right)- \\
\max _{k} f\left(y^{(k)}\right)+g\left(I\left(y^{(k)}\right)\right.
\end{array}
\end{aligned}
$$

Update rate

choice of α_{k} has important practical consequences

- α_{k} too high causes dual value to fluctuate
- α_{k} too low means slow progress

Update rate

practical: find a rate that is robust to varying inputs

- $\alpha_{k}=c$ (constant rate) can be very fast, but hard to find constant that works for all problems
- $\alpha_{k}=\frac{c}{k}$ (decreasing rate) often cuts rate too aggressively, lowers value even when making progress
- rate based on dual progress
- $\alpha_{k}=\frac{c}{t+1}$ where $t<k$ is number of iterations where dual value increased
- robust in practice, reduces rate when dual value is fluctuating

Lazy decoding

idea: don't recompute $y^{(k)}$ or $z^{(k)}$ from scratch each iteration lazy decoding: if subgradient $u^{(k)}$ is sparse, then $y^{(k)}$ may be very easy to compute from $y^{(k-1)}$
use:

- helpful if y or z factor naturally into independent components
- can be important for fast decompositions

Lazy decoding example

recall corpus-level tagging example
at this iteration, only
sentence 2 receives a weight update
with lazy decoding

$$
\begin{aligned}
& Y_{1}^{(k)} \leftarrow Y_{1}^{(k-1)} \\
& Y_{3}^{(k)} \leftarrow Y_{3}^{(k-1)}
\end{aligned}
$$

Lazy decoding results

lazy decoding is critical for the efficiency of some applications

recomputation statistics for non-projective dependency parsing

Approximate solution

upon agreement the solution is exact, but this may not occur otherwise, there is an easy way to find an approximate solution choose: the structure $y^{\left(k^{\prime}\right)}$ where

$$
k^{\prime}=\arg \max _{k} f\left(y^{(k)}\right)+g\left(I\left(y^{(k)}\right)\right)
$$

is the iteration with the best primal score
guarantee: the solution $y^{k^{\prime}}$ is non-optimal by at most

$$
\left(\min _{k} L\left(u^{k}\right)\right)-\left(f\left(y^{\left(k^{\prime}\right)}\right)+g\left(I\left(y^{\left(k^{\prime}\right)}\right)\right)\right)
$$

there are other methods to estimate solutions, for instance by averaging solutions (see Nedić and Ozdaglar (2009))

Choosing best solution

non-exact example from syntactic translation
best approximate primal solution occurs at iteration 63

Early stopping results

early stopping results for constituency and dependency parsing

Early stopping results

early stopping results for non-projective dependency parsing

Tightening

instead of using approximate solution, can tighten the algorithm may help find an exact solution at the cost of added complexity this technique is the focus of the next section

5. Linear programming

aim: explore the connections between dual decomposition and linear programming

- basic optimization over the simplex
- formal properties of linear programming
- full example with fractional optimal solutions
- tightening linear program relaxations

Simplex

define:

- $\Delta_{y} \subset \mathcal{R}^{|\mathcal{Y}|}$ is the simplex over \mathcal{Y} where $\alpha \in \Delta_{y}$ implies

$$
\alpha_{y} \geq 0 \text { and } \sum_{y} \alpha_{y}=1
$$

- α is distribution over \mathcal{Y}
- Δ_{z} is the simplex over \mathcal{Z}
- $\delta_{y}: \mathcal{Y} \rightarrow \Delta_{y}$ maps elements to the simplex
example:

$$
\mathcal{Y}=\left\{y_{1}, y_{2}, y_{3}\right\}
$$

vertices

- $\delta_{y}\left(y_{1}\right)=(1,0,0)$
- $\delta_{y}\left(y_{2}\right)=(0,1,0)$
- $\delta_{y}\left(y_{3}\right)=(0,0,1)$

Theorem 1. Simplex linear program

 optimize over the simplex Δ_{y} instead of the discrete sets \mathcal{Y}goal: optimize linear program

$$
\max _{\alpha \in \Delta_{y}} \sum_{y} \alpha_{y} f(y)
$$

theorem:

$$
\max _{y \in \mathcal{Y}} f(y)=\max _{\alpha \in \Delta_{y}} \sum_{y} \alpha_{y} f(y)
$$

proof: points in \mathcal{Y} correspond to the exteme points of simplex

$$
\left\{\delta_{y}(y): y \in \mathcal{Y}\right\}
$$

linear program has optimum at extreme point
note: finding the highest scoring distribution α over \mathcal{Y}
proof shows that best distribution chooses a single parse

Combined linear program

optimize over the simplices Δ_{y} and Δ_{z} instead of the discrete sets \mathcal{Y} and \mathcal{Z}
goal: optimize linear program

$$
\max _{\alpha \in \Delta_{y}, \beta \in \Delta_{z}} \sum_{y} \alpha_{y} f(y)+\sum_{z} \beta_{z} g(z)
$$

such that for all i, t

$$
\sum_{y} \alpha_{y} y(i, t)=\sum_{z} \beta_{z} z(i, t)
$$

note: the two distributions must match in expectation of POS tags the best distributions α^{*}, β^{*} are possibly no longer a single parse tree or tag sequence

Lagrangian

Lagrangian:

$$
\begin{aligned}
M(u, \alpha, \beta)= & \sum_{y} \alpha_{y} f(y)+\sum_{z} \beta_{z} g(z)+\sum_{i, t} u(i, t)\left(\sum_{y} \alpha_{y} y(i, t)-\sum_{z} \beta_{z} z(i, t)\right) \\
= & \left(\sum_{y} \alpha_{y} f(y)+\sum_{i, t} u(i, t) \sum_{y} \alpha_{y} y(i, t)\right)+ \\
& \left(\sum_{z} \beta_{z} g(z)-\sum_{i, t} u(i, t) \sum_{z} \beta_{z} z(i, t)\right)
\end{aligned}
$$

Lagrangian dual:

$$
M(u)=\max _{\alpha \in \Delta_{y}, \beta \in \Delta_{z}} M(u, \alpha, \beta)
$$

Theorem 2. Strong duality

define:

- α^{*}, β^{*} is the optimal assignment to α, β in the linear program
theorem:

$$
\min _{u} M(u)=\sum_{y} \alpha_{y}^{*} f(y)+\sum_{z} \beta_{z}^{*} g(z)
$$

proof: by linear programming duality

Theorem 3. Dual relationship

theorem: for any value of u,

$$
M(u)=L(u)
$$

note: solving the original Lagrangian dual also solves dual of the linear program

Theorem 3. Dual relationship (proof sketch)

focus on \mathcal{Y} term in Lagrangian

$$
\begin{aligned}
L(u) & =\max _{y \in \mathcal{Y}}\left(f(y)+\sum_{i, t} u(i, t) y(i, t)\right)+\ldots \\
M(u) & =\max _{\alpha \in \Delta_{y}}\left(\sum_{y} \alpha_{y} f(y)+\sum_{i, t} u(i, t) \sum_{y} \alpha_{y} y(i, t)\right)+\ldots
\end{aligned}
$$

by theorem 1. optimization over \mathcal{Y} and Δ_{y} have the same max similar argument for \mathcal{Z} gives $L(u)=M(u)$

Summary

$$
\begin{array}{ll}
f(y)+g(z) & \begin{array}{l}
\text { original primal objective } \\
\text { original dual }
\end{array} \\
\sum_{y} \alpha_{y} f(y)+\sum_{z} \beta_{z} g(z) & \text { LP primal objective } \\
M(u) & \text { LP dual }
\end{array}
$$

relationship between LP dual, original dual, and LP primal objective

$$
\min _{u} M(u)=\min _{u} L(u)=\sum_{y} \alpha_{y}^{*} f(y)+\sum_{z} \beta_{z}^{*} g(z)
$$

Primal relationship

define:

- $\mathcal{Q} \subseteq \Delta_{y} \times \Delta_{z}$ corresponds to feasible solutions of the original problem

$$
\begin{aligned}
\mathcal{Q}=\left\{\left(\delta_{y}(y), \delta_{z}(z)\right):\right. & y \in \mathcal{Y}, z \in \mathcal{Z} \\
& y(i, t)=z(i, t) \text { for all }(i, t)\}
\end{aligned}
$$

- $\mathcal{Q}^{\prime} \subseteq \Delta_{y} \times \Delta_{z}$ is the set of feasible solutions to the LP

$$
\begin{aligned}
\mathcal{Q}^{\prime}=\{(\alpha, \beta): & \alpha \in \Delta_{\mathcal{Y}}, \beta \in \Delta_{\mathcal{Z}} \\
& \left.\sum_{y} \alpha_{y} y(i, t)=\sum_{z} \beta_{z} z(i, t) \text { for all }(i, t)\right\}
\end{aligned}
$$

- $\mathcal{Q} \subseteq \mathcal{Q}^{\prime}$
solutions:

$$
\max _{q \in \mathcal{Q}} h(q) \leq \max _{q \in \mathcal{Q}^{\prime}} h(q) \text { for any } h
$$

Concrete example

- $\mathcal{Y}=\left\{y_{1}, y_{2}, y_{3}\right\}$
- $\mathcal{Z}=\left\{z_{1}, z_{2}, z_{3}\right\}$
- $\Delta_{y} \subset \mathbb{R}^{3}, \Delta_{z} \subset \mathbb{R}^{3}$

Simple solution

choose:

- $\alpha^{(1)}=(0,0,1) \in \Delta_{y}$ is representation of y_{3}
- $\beta^{(1)}=(0,0,1) \in \Delta_{z}$ is representation of z_{3}
confirm:

$$
\sum_{y} \alpha_{y}^{(1)} y(i, t)=\sum_{z} \beta_{z}^{(1)} z(i, t)
$$

$\alpha^{(1)}$ and $\beta^{(1)}$ satisfy agreement constraint

choose:

- $\alpha^{(2)}=(0.5,0.5,0) \in \Delta_{y}$ is combination of y_{1} and y_{2}
- $\beta^{(2)}=(0.5,0.5,0) \in \Delta_{z}$ is combination of z_{1} and z_{2}
confirm:

$$
\sum_{y} \alpha_{y}^{(2)} y(i, t)=\sum_{z} \beta_{z}^{(2)} z(i, t)
$$

$\alpha^{(2)}$ and $\beta^{(2)}$ satisfy agreement constraint, but not integral

Optimal solution

weights:

- the choice of f and g determines the optimal solution
- if (f, g) favors $\left(\alpha^{(2)}, \beta^{(2)}\right)$, the optimal solution is fractional
example: $f=\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]$ and $g=\left[\begin{array}{lll}1 & 1 & -2\end{array}\right]$
- $f \cdot \alpha^{(1)}+g \cdot \beta^{(1)}=0$ vs $f \cdot \alpha^{(2)}+g \cdot \beta^{(2)}=2$
- $\alpha^{(2)}, \beta^{(2)}$ is optimal, even though it is fractional
summary: dual and LP primal optimal:

$$
\min _{u} M(u)=\min _{u} L(u)=\sum_{y} \alpha_{y}^{(2)} f(y)+\sum_{z} \beta_{z}^{(2)} g(z)=2
$$

original primal optimal:

$$
f\left(y^{*}\right)+g\left(z^{*}\right)=0
$$

round 1

dual solutions:

y_{3}	z_{2}
X	$\mathrm{b} \longrightarrow \mathrm{a}$
C C	\downarrow
1 ।	He is
He is	

dual values:

$y^{(1)}$	2.00
$z^{(1)}$	1.00
$L\left(u^{(1)}\right)$	3.00

previous solutions:
$\begin{array}{ll}y_{3} & z_{2}\end{array}$

round 2

dual solutions:

dual values:

$$
\begin{array}{ll}
y^{(2)} & 2.00 \\
z^{(2)} & 1.00 \\
L\left(u^{(2)}\right) & 3.00
\end{array}
$$

previous solutions:

y_{3}	z_{2}
y_{2}	z_{1}

 \(\begin{array}{ll}y_{2} & z_{1}\end{array}\)

round 3

dual solutions:

$$
z_{1}
$$

$$
a \longrightarrow b
$$

$$
\begin{array}{cc}
\downarrow & \downarrow \\
\mathrm{He} & \text { is }
\end{array}
$$

dual values:

$y^{(3)}$	2.50
$z^{(3)}$	0.50
$L\left(u^{(3)}\right)$	3.00

previous solutions:

$$
\begin{array}{ll}
y_{3} & z_{2} \\
y_{2} & z_{1} \\
y_{1} & z_{1}
\end{array}
$$

round 4

dual solutions:

$$
\begin{array}{ll}
y^{(4)} & 2.17 \\
z^{(4)} & 0.17 \\
L\left(u^{(4)}\right) & 2.33
\end{array}
$$

previous solutions:

$$
\begin{array}{ll}
y_{3} & z_{2} \\
y_{2} & z_{1} \\
y_{1} & z_{1}
\end{array}
$$

$$
\begin{array}{ll}
y_{1} & z_{1}
\end{array}
$$

round 5

dual solutions:

dual values:

$y^{(5)}$	2.08
$z^{(5)}$	0.08
$L\left(u^{(5)}\right)$	2.17

previous solutions:

y_{3}	z_{2}
y_{2}	z_{1}
y_{1}	z_{1}
y_{1}	z_{1}
y_{2}	z_{2}

round 6

dual solutions:

dual values:

$$
\begin{array}{ll}
y^{(6)} & 2.12 \\
z^{(6)} & 0.12 \\
L\left(u^{(6)}\right) & 2.23
\end{array}
$$

previous solutions:

$$
\begin{array}{ll}
y_{3} & z_{2} \\
y_{2} & z_{1} \\
y_{1} & z_{1} \\
y_{1} & z_{1} \\
y_{2} & z_{2} \\
y_{1} & z_{1}
\end{array}
$$

round 7

dual solutions:

dual values:

$y^{(7)}$	2.05
$z^{(7)}$	0.05
$L\left(u^{(7)}\right)$	2.10

previous solutions:

$$
\begin{array}{ll}
y_{3} & z_{2} \\
y_{2} & z_{1} \\
y_{1} & z_{1} \\
y_{1} & z_{1} \\
y_{2} & z_{2} \\
y_{1} & z_{1} \\
y_{2} & z_{2}
\end{array}
$$

round 8

dual solutions:

dual	
$y^{(8)}$	values:
$z^{(8)}$	2.09
$L\left(u^{(8)}\right)$	0.09
	2.19

previous solutions:

$$
\begin{array}{ll}
y_{2} & z_{1} \\
y_{1} & z_{1}
\end{array}
$$

$$
y_{1} \quad z_{1}
$$

$$
y_{2} \quad z_{2}
$$

$$
y_{1} \quad z_{1}
$$

$$
y_{2} \quad z_{2}
$$

$$
\begin{array}{ll}
y_{1} & z_{1}
\end{array}
$$

round 9

dual solutions:

dual values:

$$
\begin{array}{ll}
y^{(9)} & 2.03 \\
z^{(9)} & 0.03 \\
L\left(u^{(9)}\right) & 2.06
\end{array}
$$

previous solutions:

$$
\begin{array}{ll}
y_{3} & z_{2} \\
y_{2} & z_{1} \\
y_{1} & z_{1} \\
y_{1} & z_{1} \\
y_{2} & z_{2} \\
y_{1} & z_{1} \\
y_{2} & z_{2} \\
y_{1} & z_{1} \\
y_{2} & z_{2}
\end{array}
$$

Tightening (Sherali and Adams, 1994; Sontag et al., 2008)

modify:

- extend \mathcal{Y}, \mathcal{Z} to identify bigrams of part-of-speech tags
- $y\left(i, t_{1}, t_{2}\right)=1 \leftrightarrow y\left(i, t_{1}\right)=1$ and $y\left(i+1, t_{2}\right)=1$
- $z\left(i, t_{1}, t_{2}\right)=1 \leftrightarrow z\left(i, t_{1}\right)=1$ and $z\left(i+1, t_{2}\right)=1$ all bigram constraints: valid to add for all $i, t_{1}, t_{2} \in \mathcal{T}$

$$
\sum_{y} \alpha_{y} y\left(i, t_{1}, t_{2}\right)=\sum_{z} \beta_{z} z\left(i, t_{1}, t_{2}\right)
$$

however this would make decoding expensive

Iterative tightening

single bigram constraint: cheaper to implement

$$
\sum_{y} \alpha_{y} y(1, a, b)=\sum_{z} \beta_{z} z(1, a, b)
$$

the solution $\alpha^{(1)}, \beta^{(1)}$ trivially passes this constraint, while $\alpha^{(2)}, \beta^{(2)}$ violates it

Dual decomposition with tightening

tightened decomposition includes an additional Lagrange multiplier

$$
\begin{aligned}
& y_{u, v}=\arg \max _{y \in \mathcal{Y}} f(y)+\sum_{i, t} u(i, t) y(i, t)+v(1, a, b) y(1, a, b) \\
& z_{u, v}=\arg \max _{z \in \mathcal{Z}} g(z)-\sum_{i, t} u(i, t) z(i, t)-v(1, a, b) z(1, a, b)
\end{aligned}
$$

in general, this term can make the decoding problem more difficult

example:

- for small examples, these penalties are easy to compute
- for CFG parsing, need to include extra states that maintain tag bigrams (still faster than full intersection)

round 7

dual solutions:

y_{3}	z_{2}
X	$\mathrm{b} \longrightarrow \mathrm{a}$
C C	\downarrow v
1	He is
He is	

dual values:
$y^{(7)} \quad 2.00$

$z^{(7)}$	1.00

$L\left(u^{(7)}\right) \quad 3.00$
previous solutions:

$$
y_{3} \quad z_{2}
$$

round 8

dual solutions:

\section*{dual values:
 | $y^{(8)}$ | 3.00 |
| :--- | :--- |
| $z^{(8)}$ | 2.00 |
| $L\left(u^{(8)}\right)$ | 5.00 |}

previous solutions:

$$
\begin{array}{ll}
y_{3} & z_{2} \\
y_{2} & z_{3}
\end{array}
$$

round 9

dual solutions:

dual values:

$$
\begin{array}{lr}
y^{(9)} & 3.00 \\
z^{(9)} & -1.00 \\
L\left(u^{(9)}\right) & 2.00
\end{array}
$$

previous solutions:

y_{3}	z_{2}
y_{2}	z_{3}
y_{1}	z_{2}

round 10

dual solutions:

dual values:

$$
\begin{array}{ll}
y^{(10)} & 2.00 \\
z^{(10)} & 1.00 \\
L\left(u^{(10)}\right) & 3.00
\end{array}
$$

previous solutions:
$y_{3} \quad z_{2}$
$y_{2} \quad z_{3}$
$y_{1} \quad z_{2}$
$y_{3} \quad z_{1}$

round 11

dual solutions:

dual values:

$y^{(11)}$	3.00
$z^{(11)}$	2.00
$L\left(u^{(11)}\right)$	5.00

previous solutions:
$\begin{array}{ll}y_{3} & z_{2} \\ y_{2} & z_{3} \\ y_{1} & z_{2}\end{array}$
$y_{3} \quad z_{1}$
$y_{2} \quad z_{3}$

round 12

dual solutions:

dual values:

$y^{(12)}$	3.00
$z^{(12)}$	-1.00
$L\left(u^{(12)}\right)$	2.00

previous solutions:

y_{3}	z_{2}
y_{2}	z_{3}
y_{1}	z_{2}

$y_{3} \quad z_{1}$
$y_{2} \quad z_{3}$
$y_{1} \quad z_{2}$

round 13

dual solutions:

dual values:

$y^{(13)}$	2.00
$z^{(13)}$	-1.00
$L\left(u^{(13)}\right)$	1.00

previous solutions:

y_{3}	z_{2}
y_{2}	z_{3}
y_{1}	z_{2}

$y_{3} \quad z_{1}$
$\begin{array}{ll}y_{2} & z_{3}\end{array}$
$y_{1} \quad z_{2}$
$y_{3} \quad z_{1}$

round 14

dual solutions:

dual values:

$y^{(14)}$	3.00
$z^{(14)}$	2.00
$L\left(u^{(14)}\right)$	5.00

previous solutions:

y_{3}	z_{2}
y_{2}	z_{3}
y_{1}	z_{2}

$y_{3} \quad z_{1}$
$y_{2} \quad z_{3}$
$y_{1} \quad z_{2}$
$y_{3} \quad z_{1}$
$y_{2} \quad z_{3}$

round 15

dual solutions:

dual values:

$y^{(15)}$	3.00
$z^{(15)}$	-1.00
$L\left(u^{(15)}\right)$	2.00

previous solutions:

y_{3}	z_{2}
y_{2}	z_{3}
y_{1}	z_{2}

$y_{3} \quad z_{1}$
$\begin{array}{ll}y_{2} & z_{3} \\ y_{1} & z_{2}\end{array}$
$y_{1} \quad z_{2}$
$y_{3} \quad z_{1}$
$\begin{array}{ll}y_{2} & z_{3}\end{array}$
$y_{1} \quad z_{2}$

round 16

dual solutions:

dual values:

$y^{(16)}$	2.00
$z^{(16)}$	-2.00
$L\left(u^{(16)}\right)$	0.00

previous solutions:

y_{3}	z_{2}
y_{2}	z_{3}
y_{1}	z_{2}
y_{3}	z_{1}
y_{2}	z_{3}
y_{1}	z_{2}
y_{3}	z_{1}
y_{2}	z_{3}
y_{1}	z_{2}
y_{3}	z_{3}

6. Advanced examples

aim: demonstrate some different relaxation techniques

- higher-order non-projective dependency parsing
- syntactic machine translation

Higher-order non-projective dependency parsing

setup: given a model for higher-order non-projective dependency parsing (sibling features)
problem: find non-projective dependency parse that maximizes the score of this model

difficulty:

- model is NP-hard to decode
- complexity of the model comes from enforcing combinatorial constraints
strategy: design a decomposition that separates combinatorial constraints from direct implementation of the scoring function

Non-Projective Dependency Parsing

Important problem in many languages.
Problem is NP-Hard for all but the simplest models.

Dual Decomposition

A classical technique for constructing decoding algorithms.

Solve complicated models

$$
y^{*}=\arg \max _{y} f(y)
$$

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

- Dynamic programming
- Minimum spanning tree
- Shortest path
- Min-Cut
- ...

Non-Projective Dependency Parsing

- Starts at the root symbol *
- Each word has a exactly one parent word
- Produces a tree structure (no cycles)
- Dependencies can cross

Arc-Factored

$f(y)=$

Arc-Factored

$$
f(y)=\operatorname{score}\left(\text { head }=*_{0}, \bmod =\operatorname{saw}_{2}\right)
$$

Arc-Factored

$$
f(y)=\operatorname{score}\left(\text { head }=*_{0}, \bmod =\operatorname{saw}_{2}\right)+\operatorname{score}\left(\text { saw }_{2}, \mathrm{John}_{1}\right)
$$

Arc-Factored

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}, \bmod =$ saw $\left._{2}\right)+\operatorname{score}\left(\right.$ saw $_{2}$, John $\left._{1}\right)$

$$
+ \text { score }\left(\mathrm{saw}_{2}, \text { movie }_{4}\right)
$$

Arc-Factored

$$
\begin{aligned}
f(y)= & \operatorname{score}\left(\text { head }=*_{0}, \bmod =\operatorname{saw}_{2}\right)+\operatorname{score}\left(\mathrm{saw}_{2}, \mathrm{John}_{1}\right) \\
& +\operatorname{score}\left(\mathrm{saw}_{2}, \operatorname{movie}_{4}\right)+\operatorname{score}\left(\mathrm{saw}_{2}, \text { today }_{5}\right)
\end{aligned}
$$

Arc-Factored

Arc-Factored

e.g. $\operatorname{score}\left(*_{0}, \operatorname{saw}_{2}\right)=\log p\left(\operatorname{saw}_{2} \mid *_{0}\right) \quad$ (generative model)

Arc-Factored

Arc-Factored

Sibling Models

$f(y)=$

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, $\bmod =$ saw $\left._{2}\right)$

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, $\left.\bmod =\operatorname{saw}_{2}\right)$

+ score $\left(\right.$ saw $_{2}$, NULL, John 1)

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, $\bmod =$ saw $\left._{2}\right)$

+ score $\left(\right.$ saw $_{2}$, NULL, $\left.\mathrm{John}_{1}\right)+$ score $\left(\right.$ saw $_{2}$, NULL, movie $\left._{4}\right)$

Sibling Models

$$
\begin{aligned}
f(y)= & \operatorname{score}\left(\text { head }=*_{0}, \text { prev }=\text { NULL }, \text { mod }=\operatorname{saw}_{2}\right) \\
& +\operatorname{score}\left(\mathrm{saw}_{2}, \text { NULL }, \mathrm{John}_{1}\right)+\operatorname{score}\left(\mathrm{saw}_{2}, \text { NULL }, \text { movie }_{4}\right) \\
& +\operatorname{score}\left(\mathrm{saw}_{2}, \text { movie }_{4}, \text { today }_{5}\right)+\ldots
\end{aligned}
$$

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, $\left.\bmod =\operatorname{saw}_{2}\right)$

+ score $\left(\mathrm{saw}_{2}\right.$, NULL, $\left.^{2} \mathrm{John}_{1}\right)+$ score $\left(\mathrm{saw}_{2}\right.$, NULL, $^{\text {movie }} 4$) + score $\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)+\ldots$
e.g. score $\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)=\log p\left(\right.$ today $_{5} \mid \mathrm{saw}_{2}$, movie $\left._{4}\right)$

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, $\left.\bmod =\operatorname{saw}_{2}\right)$

+ score $\left(\mathrm{saw}_{2}\right.$, NULL, $\left.^{2} \mathrm{John}_{1}\right)+$ score $\left(\mathrm{saw}_{2}\right.$, NULL, $^{\text {movie }} 4$) + score $\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)+\ldots$
e.g. score $\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)=\log p\left(\right.$ today $_{5} \mid \operatorname{saw}_{2}$, movie $\left._{4}\right)$ or score $\left(\mathrm{saw}_{2}\right.$, movie $_{4}$, today $\left._{5}\right)=w \cdot \phi\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)$

Sibling Models

$f(y)=\operatorname{score}\left(\right.$ head $=*_{0}$, prev $=$ NULL, $\bmod =$ saw $\left._{2}\right)$

$$
\begin{aligned}
& + \text { score }\left(\mathrm{saw}_{2}, \text { NULL }, \mathrm{John}_{1}\right)+\text { score }\left(\text { saw }_{2},{\text { NULL } \left., \text { movie }_{4}\right)}^{+ \text {score }\left(\mathrm{saw}_{2}, \text { movie }_{4}, \text { today }_{5}\right)+\ldots}\right.
\end{aligned}
$$

e.g. score $\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)=\log p\left(\right.$ today $_{5} \mid$ saw $_{2}$, movie $\left._{4}\right)$ or score $\left(\mathrm{saw}_{2}\right.$, movie $_{4}$, today $\left._{5}\right)=w \cdot \phi\left(\right.$ saw $_{2}$, movie $_{4}$, today $\left._{5}\right)$

$$
y^{*}=\arg \max _{y} f(y) \Leftarrow \text { NP-Hard }
$$

Thought Experiment: Individual Decoding

* $_{0}$ John $_{1} \quad$ saw $_{2} \quad$ a3 movie $_{4}$ today ${ }_{5}$ that ${ }_{6}$ he ${ }_{7}$ liked 8

Thought Experiment: Individual Decoding

$$
\begin{aligned}
& \text { * }_{0} \text { John }_{1} \text { saw }_{2} \text { a }_{3} \text { movie }_{4} \text { today }_{5} \text { that } \\
& 6
\end{aligned}
$$

Thought Experiment: Individual Decoding

$$
\begin{aligned}
& \text { abian } \text { movie }_{4} \text { today }_{5} \text { that }_{6} \text { he }_{7} \text { liked }_{8} \\
& \operatorname{score}\left(\text { saw }_{2}, \text { NULL, }^{2} \mathrm{John}_{1}\right)+\operatorname{score}\left(\mathrm{saw}_{2} \text {, NULL, } \text { movie }_{4}\right) \\
& + \text { score(} \text { saw }_{2}, \text { movie }_{4}, \text { today }_{5} \text {) }
\end{aligned}
$$

score $\left(\right.$ saw $_{2}$, NULL 2, John $\left._{1}\right)+\operatorname{score}\left(\right.$ saw $_{2}$, NULL 2, that $\left._{6}\right)$

Thought Experiment: Individual Decoding

score $\left(\right.$ saw $_{2}$, NULL 2, John $\left._{1}\right)+\operatorname{score}\left(\right.$ saw $_{2}$, NULL 2, that $\left._{6}\right)$
score $\left(\right.$ saw $_{2}$, NULL $\left.^{2} \mathrm{a}_{3}\right)+\operatorname{score}\left(\mathrm{saw}_{2}, \mathrm{a}_{3}, \mathrm{he}_{7}\right)$

Thought Experiment: Individual Decoding

$\begin{gathered} 2^{n-1} \\ \text { possibilities } \end{gathered}$	score(saw $_{2}$, NULL 2, John $\left._{1}\right)+$ score $\left(\right.$ saw $_{2}$, NULL, 2 movie $\left._{4}\right)$ + score $\left(\right.$ saw $_{2}$, movie $_{4}$, ,oday $_{5}$)
	score(saw $_{2}$, NULL $^{\text {, John }}$ 1 $)+$ score(saw $_{2}$, NULL, $\left.^{\text {, that }}{ }_{6}\right)$
	score(saw_{2}, NULL, $\left.\mathrm{a}_{3}\right)+\operatorname{score}\left(\mathrm{saw}_{2}, \mathrm{a}_{3}, \mathrm{he}_{7}\right)$

Thought Experiment: Individual Decoding

Under Sibling Model, can solve for each word with Viterbi decoding.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

Thought Experiment Continued

Idea: Do individual decoding for each head word using dynamic programming.

If we're lucky, we'll end up with a valid final tree.

But we might violate some constraints.

Dual Decomposition Idea

Dual Decomposition Idea

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as $\operatorname{argmax} f(z)+g(y)$

$$
z \in \mathcal{Z}, y \in \mathcal{Y}
$$

such that $z=y$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as $\operatorname{argmax} f(z)+g(y)$

$$
z \in \mathcal{Z}, y \in \mathcal{Y}
$$

such that $z=y$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as $\operatorname{argmax} f(z)+g(y)$

$$
\begin{aligned}
& z \in \mathcal{Z}, y \in \mathcal{Y} \\
& \text { All Possible } \\
& \text { such that } z=y
\end{aligned}
$$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as argmax $f(z)+g(y)$

$$
\begin{aligned}
& z \in \mathcal{Z}, y \in \mathcal{Y} \\
& \text { All Possible } \\
& \text { such that } z=y
\end{aligned}
$$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Dual Decomposition Structure

$$
\text { Goal } y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)
$$

Rewrite as $\operatorname{argmax} f(z)+g(y)$

such that $z=y$

Algorithm Sketch

Set penalty weights equal to 0 for all edges.
For $k=1$ to K

Algorithm Sketch

Set penalty weights equal to 0 for all edges.
For $k=1$ to K
$z^{(k)} \leftarrow$ Decode ($f(z)+$ penalty $)$ by Individual Decoding

Algorithm Sketch

Set penalty weights equal to 0 for all edges.
For $k=1$ to K
$z^{(k)} \leftarrow$ Decode ($f(z)+$ penalty) by Individual Decoding
$y^{(k)} \leftarrow$ Decode $(g(y)$ - penalty $)$ by Minimum Spanning Tree

Algorithm Sketch

Set penalty weights equal to 0 for all edges.
For $k=1$ to K
$z^{(k)} \leftarrow$ Decode ($f(z)+$ penalty) by Individual Decoding
$y^{(k)} \leftarrow$ Decode $(g(y)-$ penalty $)$ by Minimum Spanning Tree
If $y^{(k)}(i, j)=z^{(k)}(i, j)$ for all $i, j \operatorname{Return}\left(y^{(k)}, z^{(k)}\right)$

Algorithm Sketch

Set penalty weights equal to 0 for all edges.
For $k=1$ to K
$z^{(k)} \leftarrow$ Decode ($f(z)+$ penalty) by Individual Decoding
$y^{(k)} \leftarrow$ Decode $(g(y)-$ penalty $)$ by Minimum Spanning Tree
If $y^{(k)}(i, j)=z^{(k)}(i, j)$ for all i, j Return $\left(y^{(k)}, z^{(k)}\right)$
Else Update penalty weights based on $y^{(k)}(i, j)-z^{(k)}(i, j)$

Individual Decoding

$$
u(i, j)=0 \text { for all } i, j
$$

* $_{0}$ John $_{1} \quad$ saw $_{2} \quad$ a $3 ~$ movie $_{4}$ today ${ }_{5}$ that 6 he liked $_{8}$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

* $_{0} \mathrm{John}_{1}$ saw $_{2}$ a3 movie $_{4}$ today $_{5}$ that ${ }_{6}$ he ${ }_{7}$ liked $_{8}$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow Sibling Model	$g(y)$	\Leftarrow	Arc-Factored Model
\mathcal{Z}	\Leftarrow	$\mathcal{Y} o$ Constraints	\Leftarrow	Tree Constraints
$y(i, j)=1$	if y contains dependency i, j			

Individual Decoding

Penalties

$$
u(i, j)=0 \text { for all } i, j
$$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

* $_{0}$ John $_{1}$ saw $_{2}$ a3 movie $_{4}$ today $_{5}$ that 6 he ${ }_{7}$ liked 8

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow	Sibling Model	$g(y)$	\Leftarrow	Arc-Factored Model
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow	Tree Constraints
$y(i, j)=1$	if	y contains dependency i, j			

Individual Decoding

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$$
\begin{array}{lllll}
f(z) & \Leftarrow \text { Sibling Model } & g(y) & \Leftarrow & \text { Arc-Factored Model } \\
\mathcal{Z} & \Leftarrow & \text { No Constraints } & \mathcal{Y} & \Leftarrow \\
y(i, j)=1 & \text { if } y \text { Tree Constraints }
\end{array}
$$

Individual Decoding

Penalties

$$
u(i, j)=0 \text { for all } i, j
$$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$$
\begin{array}{llllll}
f(z) & \Leftarrow & \text { Sibling Model } & g(y) & \Leftarrow & \text { Arc-Factored Model } \\
\mathcal{Z} & \Leftarrow & \text { No Constraints } & \mathcal{Y} & \Leftarrow & \text { Tree Constraints } \\
y(i, j)=1 & \text { if } y \text { contains dependency } i, j & & &
\end{array}
$$

Individual Decoding

Minimum Spanning Tree

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow	Sibling Model	$g(y)$	\Leftarrow	Arc-Factored Model
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow	Tree Constraints
$y(i, j)=1$	if	y contains dependency i, j			

Individual Decoding

Penalties

$u(i, j)=0$ for all i, j	
Iteration 1	
$u(8,1)$	-1
$u(4,6)$	-1
$u(2,6)$	1
$u(8,7)$	1

Minimum Spanning Tree

* $_{0} \mathrm{John}_{1}$ saw $_{2}$ a3 movie $_{4}$ today $_{5}$ that ${ }_{6}$ he ${ }_{7}$ liked $_{8}$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow Sibling Model	$g(y)$	\Leftarrow
\mathcal{Z}	\Leftarrow No Constraints	\mathcal{Y}	\Leftarrow Tree Constraints
$y(i, j)=1$	if y contains dependency i, j		

Individual Decoding

Penalties

$$
\begin{equation*}
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& u(i, j)=0 \text { for all } i, j \\
& \begin{array}{lc}
\text { Iteration } 1 \\
\hline u(8,1) & -1 \\
u(4,6) & -1 \\
u(2,6) & 1 \\
u(8,7) & 1
\end{array}
\end{aligned}
$$

Minimum Spanning Tree

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow	Sibling Model	$g(y)$	\Leftarrow	Arc-Factored Model
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow	Tree Constraints
$y(i, j)=1$	if	y contains dependency i, j			

Individual Decoding

Penalties

$$
\begin{aligned}
& u(i, j)=0 \text { for all } i, j \\
& \begin{array}{lc}
\text { Iteration } 1 \\
\hline u(8,1) & -1 \\
u(4,6) & -1 \\
u(2,6) & 1
\end{array}
\end{aligned}
$$

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow Sibling Model	$g(y)$	\Leftarrow Arc-Factored Model	
\mathcal{Z}	\Leftarrow No Constraints	\mathcal{Y}	\Leftarrow Tree Constraints	
$y(i, j)=1$	if y contains dependency i, j			

Individual Decoding

Penalties

$u(i, j)=0$ for all i, j	
Iteration 1	
$u(8,1)$	-1
$u(4,6)$	-1
$u(2,6)$	1
$u(8,7)$	1
Iteration 2	
$u(8,1)$	-1
$u(4,6)$	-2
$u(2,6)$	2
$u(8,7)$	1

* $_{0}$ John $_{1}$ saw $_{2}$ a a movie $_{4}$ today $_{5}$ that $_{6}$ he $_{7}$ liked $_{8}$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow	Sibling Model	$g(y)$	\Leftarrow	Arc-Factored Model
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow	Tree Constraints
$y(i, j)=1$	if	y contains dependency i, j			

Individual Decoding
Penalties

Penalties	
$u(i, j)=0$ for all i, j	
Iteration 1	
$u(8,1)$	-1
$u(4,6)$	-1
$u(2,6)$	1
$u(8,7)$	1
Iteration 2	
$u(8,1)$	-1
$u(4,6)$	-2
$u(2,6)$	2
$u(8,7)$	1

$$
z^{*}=\arg \max _{z \in \mathcal{Z}}\left(f(z)+\sum_{i, j} u(i, j) z(i, j)\right)
$$

Minimum Spanning Tree

* $_{0}$ John $_{1}$ saw $_{2}$ a a movie $_{4}$ today $_{5}$ that $_{6}$ he $_{7}$ liked $_{8}$

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$f(z)$	\Leftarrow	Sibling Model	$g(y)$	\Leftarrow	Arc-Factored Model
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow	Tree Constraints
$y(i, j)=1$	if	y contains dependency i, j			

Individual Decoding

Penalties

| $u(i, j)=0$ for all i, j |
| :--- | ---: |
| Iteration 1 |, | $u(8,1)$ | -1 |
| :--- | ---: |
| $u(4,6)$ | -1 |
| $u(2,6)$ | 1 |
| $u(8,7)$ | 1 |
| Iteration 2 | |
| $u(8,1)$ | -1 |
| $u(4,6)$ | -2 |
| $u(2,6)$ | 2 |
| $u(8,7)$ | 1 |

$$
y^{*}=\arg \max _{y \in \mathcal{Y}}\left(g(y)-\sum_{i, j} u(i, j) y(i, j)\right)
$$

Key

$$
\begin{array}{lllll}
f(z) & \Leftarrow \text { Sibling Model } & g(y) & \Leftarrow & \text { Arc-Factored Model } \\
\mathcal{Z} & \Leftarrow & \text { No Constraints } & \mathcal{Y} & \Leftarrow \\
y(i, j)=1 & \text { if } y \text { Tree Constraints }
\end{array}
$$

Individual Decoding

Penalties

$$
\begin{array}{lr}
u(i, j)=0 \text { for all } i, j \\
\text { Iteration } 1 \\
\hline u(8,1) & -1 \\
u(4,6) & -1 \\
u(2,6) & 1 \\
u(8,7) & 1 \\
& \\
\text { Iteration } 2 & \\
\hline u(8,1) & -1 \\
u(4,6) & -2 \\
u(2,6) & 2 \\
u(8,7) & 1
\end{array}
$$

Converged

$$
y^{*}=\arg \max _{y \in \mathcal{Y}} f(y)+g(y)
$$

Key

$f(z)$	\Leftarrow Sibling Model	$g(y)$	\Leftarrow	Arc-Factored Model
\mathcal{Z}	\Leftarrow	No Constraints	\mathcal{Y}	\Leftarrow
$y(i, j)=1$	if	y Tree Contains dependency i, j		

Guarantees

Theorem
If at any iteration $y^{(k)}=z^{(k)}$, then $\left(y^{(k)}, z^{(k)}\right)$ is the global optimum.

In experiments, we find the global optimum on 98% of examples.

Guarantees

Theorem

If at any iteration $y^{(k)}=z^{(k)}$, then $\left(y^{(k)}, z^{(k)}\right)$ is the global optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an approximate solution (more in the paper).

Extensions

- Grandparent Models

$f(y)=\ldots+\operatorname{score}\left(g p=*_{0}\right.$, head $=\operatorname{saw}_{2}$, prev $=$ movie $_{4}, \bmod =$ today $\left._{5}\right)$
- Head Automata (Eisner, 2000)

Generalization of Sibling models

Allow arbitrary automata as local scoring function.

Experiments

Properties:

- Exactness
- Parsing Speed
- Parsing Accuracy
- Comparison to Individual Decoding
- Comparison to LP/ILP

Training:

- Averaged Perceptron (more details in paper)

Experiments on:

- CoNLL Datasets
- English Penn Treebank
- Czech Dependency Treebank

How often do we exactly solve the problem?

- Percentage of examples where the dual decomposition finds an exact solution.

Parsing Speed

Sibling model

Grandparent model

- Number of sentences parsed per second
- Comparable to dynamic programming for projective parsing

Accuracy

	Arc-Factored	Prev Best	Grandparent
Dan	89.7	91.5	$\mathbf{9 1 . 8}$
Dut	82.3	85.6	$\mathbf{8 5 . 8}$
Por	90.7	92.1	$\mathbf{9 3 . 0}$
Slo	82.4	85.6	$\mathbf{8 6 . 2}$
Swe	88.9	90.6	$\mathbf{9 1 . 4}$
Tur	75.7	76.4	$\mathbf{7 7 . 6}$
Eng	90.1	-	$\mathbf{9 2 . 5}$
Cze	84.4	-	$\mathbf{8 7 . 3}$

Prev Best - Best reported results for CoNLL-X data set, includes

- Approximate search (McDonald and Pereira, 2006)
- Loop belief propagation (Smith and Eisner, 2008)
- (Integer) Linear Programming (Martins et al., 2009)

Comparison to Subproblems

F_{1} for dependency accuracy

Comparison to LP/ILP

Martins et al.(2009): Proposes two representations of non-projective dependency parsing as a linear programming relaxation as well as an exact ILP.

- LP (1)
- LP (2)
- ILP

Use an LP/ILP Solver for decoding
We compare:

- Accuracy
- Exactness
- Speed

Both LP and dual decomposition methods use the same model, features, and weights w.

Comparison to LP/ILP: Accuracy

- All decoding methods have comparable accuracy

Comparison to LP/ILP: Exactness and Speed

Percentage with exact solution
Sentences per second

Syntactic translation decoding

setup: assume a trained model for syntactic machine translation problem: find best derivation that maximizes the score of this model

difficulty:

- need to incorporate language model in decoding
- empirically, relaxation is often not tight, so dual decomposition does not always converge
strategy:
- use a different relaxation to handle language model
- incrementally add constraints to find exact solution

Syntactic Translation

Problem:

Decoding synchronous grammar for machine translation

Example:

$$
\begin{gathered}
\text { <s> abarks le dug </s> } \\
\downarrow \\
\text { <s> the dog barks loudly </s> }
\end{gathered}
$$

Goal:

$$
y^{*}=\arg \max _{y} f(y)
$$

where y is a parse derivation in a synchronous grammar

Hiero Example

Consider the input sentence
<s> abarks le dug </s>

And the synchronous grammar

$$
\begin{aligned}
& S \rightarrow \text { s> X </s>, <s> X </s> } \\
& X \rightarrow \text { abarks } X, X \text { barks loudly } \\
& X \rightarrow \text { abarks } X, \text { barks X } \\
& X \rightarrow \text { abarks } X, \text { barks X loudly } \\
& X \rightarrow \text { le dug, the dog } \\
& X \rightarrow \text { le dug, a cat }
\end{aligned}
$$

Hiero Example

Apply synchronous rules to map this sentence

Many possible mappings:
<s> the dog barks loudly </s>
<s> a cat barks loudly </s>
<s> barks the dog </s>
<s> barks a cat </s>
<s> barks the dog loudly </s>
<s> barks a cat loudly </s>

Translation Forest

Rule	Score
$1 \rightarrow$ <s> 4 </s>	-1
$4 \rightarrow 5$ barks loudly	2
$4 \rightarrow$ barks 5	0.5
$4 \rightarrow$ barks 5 loudly	3
$5 \rightarrow$ the dog	-4
$5 \rightarrow$ a cat	2.5

Example: a derivation in the translation forest

Scoring function

Score : sum of hypergraph derivation and language model

$$
f(y)=\operatorname{score}(5 \rightarrow \text { a cat })
$$

Scoring function

Score : sum of hypergraph derivation and language model

$$
f(y)=\operatorname{score}(5 \rightarrow \text { a cat })+\operatorname{score}(4 \rightarrow 5 \text { barks loudly })
$$

Scoring function

Score : sum of hypergraph derivation and language model

$$
\begin{aligned}
f(y)= & \operatorname{score}(5 \rightarrow \text { a cat })+\operatorname{score}(4 \rightarrow 5 \text { barks loudly })+\ldots \\
& +\operatorname{score}(<\text { s }>, \text { the })
\end{aligned}
$$

Scoring function

Score: sum of hypergraph derivation and language model

$$
\begin{aligned}
f(y)= & \operatorname{score}(5 \rightarrow \text { a cat })+\operatorname{score}(4 \rightarrow 5 \text { barks loudly })+\ldots \\
& +\operatorname{score}(\langle\mathrm{s}\rangle, a)+\operatorname{score}(\mathrm{a}, \mathrm{cat})
\end{aligned}
$$

Exact Dynamic Programming

To maximize combined model, need to ensure that bigrams are consistent with parse tree.

Exact Dynamic Programming

To maximize combined model, need to ensure that bigrams are consistent with parse tree.

Original Rules
$5 \rightarrow$ the dog
$5 \rightarrow$ a cat

New Rules

Lagrangian Relaxation Algorithm for Syntactic Translation

Outline:

- Algorithm for simplified version of translation
- Full algorithm with certificate of exactness
- Experimental results

Thought experiment: Greedy language model Choose best bigram for a given word

- score(<s>, barks)

Thought experiment: Greedy language model Choose best bigram for a given word

- score(<s>, barks)
- score(dog, barks)

Thought experiment: Greedy language model
Choose best bigram for a given word

- score(<s>, barks)
- score(dog, barks)
- score(cat, barks)

Thought experiment: Greedy language model
Choose best bigram for a given word

- score(<s>, barks)
- score(dog, barks)
- score(cat, barks)

Can compute with a simple maximization

$$
\arg \max _{w:\langle w, \text { barks }\rangle \in \mathcal{B}} \operatorname{score}(w, \text { barks })
$$

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

(the)

(a)

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

cat
a

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

Step 2. Find the best derivation with fixed bigrams

Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

Step 2. Find the best derivation with fixed bigrams

Thought Experiment Problem

May produce invalid parse and bigram relationship

Greedy bigram selection may conflict with the parse derivation

Thought Experiment Problem

May produce invalid parse and bigram relationship

Greedy bigram selection may conflict with the parse derivation

Formal objective

Notation: $y(w, v)=1$ if the bigram $\langle w, v\rangle \in \mathcal{B}$ is in y

Goal:

$$
\arg \max _{y \in \mathcal{Y}} f(y)
$$

such that for all words nodes y_{v}

Formal objective

Notation: $y(w, v)=1$ if the bigram $\langle w, v\rangle \in \mathcal{B}$ is in y

Goal:

$$
\arg \max _{y \in \mathcal{Y}} f(y)
$$

such that for all words nodes y_{v}

$$
\begin{equation*}
w--y_{v}=\sum_{w:\langle w, v\rangle \in \mathcal{B}} y(w, v) \tag{1}
\end{equation*}
$$

Formal objective

Notation: $y(w, v)=1$ if the bigram $\langle w, v\rangle \in \mathcal{B}$ is in y

Goal:

$$
\arg \max _{y \in \mathcal{Y}} f(y)
$$

such that for all words nodes y_{v}

$$
\begin{align*}
y_{v} & =\sum_{w:\langle w, v\rangle \in \mathcal{B}} y(w, v) \tag{1}\\
y_{v} & =\sum_{w:\langle v, w\rangle \in \mathcal{B}} y(v, w) \tag{2}
\end{align*}
$$

Formal objective

Notation: $y(w, v)=1$ if the bigram $\langle w, v\rangle \in \mathcal{B}$ is in y

Goal:

$$
\arg \max _{y \in \mathcal{Y}} f(y)
$$

such that for all words nodes y_{v}

$$
\begin{align*}
& w--\mathrm{v} y_{v}=\sum_{w:\langle w, v\rangle \in \mathcal{B}} y(w, v) \tag{1}\\
& \mathrm{v}--\mathrm{w} y_{v}=\sum_{w:\langle v, w\rangle \in \mathcal{B}} y(v, w) \tag{2}
\end{align*}
$$

Formal objective

Notation: $y(w, v)=1$ if the bigram $\langle w, v\rangle \in \mathcal{B}$ is in y
Goal:

$$
\arg \max _{y \in \mathcal{Y}} f(y)
$$

such that for all words nodes y_{v}

$$
\begin{align*}
& w-v y_{v}=\sum_{w:\langle w, v\rangle \in \mathcal{B}} y(w, v) \tag{1}\\
& v-w y_{v}=\sum_{w:\langle v, w\rangle \in \mathcal{B}} y(v, w) \tag{2}
\end{align*}
$$

Lagrangian: Relax constraint (2), leave constraint (1)

$$
L(u, y)=\max _{y \in \mathcal{Y}} f(y)+\sum_{w, v} u(v)\left(y_{v}-\sum_{w:\langle v, w\rangle \in \mathcal{B}} y(v, w)\right)
$$

For a given $u, L(u, y)$ can be solved by our greedy LM algorithm

Algorithm

Set $u^{(1)}(v)=0$ for all $v \in V_{L}$
For $k=1$ to K

$$
\begin{aligned}
& y^{(k)} \leftarrow \arg \max _{y \in \mathcal{Y}} L^{(k)}(u, y) \\
& \text { If } y_{v}^{(k)}=\sum_{w:\langle v, w\rangle \in \mathcal{B}} y^{(k)}(v, w) \text { for all } v \operatorname{Return}\left(y^{(k)}\right)
\end{aligned}
$$

Else

$$
u^{(k+1)}(v) \leftarrow u^{(k)}(v)-\alpha_{k}\left(y_{v}^{(k)}-\sum_{w:\langle v, w\rangle \in \mathcal{B}} y^{(k)}(v, w)\right)
$$

Thought experiment: Greedy with penalties

Choose best bigram with penalty for a given word

- score(<s>, barks) $-u(\langle s\rangle)+u($ barks $)$

Thought experiment: Greedy with penalties

Choose best bigram with penalty for a given word

- score(<s>, barks) $-u($ ss>) $+u($ barks $)$
- score(cat, barks) $-u($ cat $)+u($ barks $)$

Thought experiment: Greedy with penalties

Choose best bigram with penalty for a given word

- score(<s>, barks) $-u($ (s>) $+u$ (barks)
- score(cat, barks) $-u($ cat $)+u($ barks $)$
- score $(\mathrm{dog}$, barks $)-u(\mathrm{dog})+u$ (barks)

Thought experiment: Greedy with penalties

Choose best bigram with penalty for a given word

- score(<s>, barks) $-u($ <s>) $+u$ (barks)
- score(cat, barks) $-u($ cat $)+u($ barks $)$
- score $(\mathrm{dog}$, barks $)-u(\mathrm{dog})+u($ barks $)$

Can still compute with a simple maximization over

$$
\arg \max _{w:\langle w, \text { barks }\rangle \in \mathcal{B}} \operatorname{score}(w, \text { barks })-u(w)+u(\text { barks })
$$

Algorithm example

Penalties

v	</s>	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	0	0	0	0	0	0

Greedy decoding

Algorithm example

Penalties

v	</s>	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	0	0	0	0	0	0

Greedy decoding

Algorithm example

Penalties

v	</s>	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	0	0	0	0	0	0

Greedy decoding

Algorithm example

Penalties

v	</s>	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	0	0	0	0	0	0

Greedy decoding

Algorithm example

Penalties

v	</s>	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	-1	1	0	-1	0	1

Greedy decoding

Algorithm example

Penalties

v	</s>	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	-1	1	0	-1	0	1

Greedy decoding

Algorithm example

Penalties

v	</s>	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	-1	1	0	-1	0	1

Greedy decoding

Algorithm example

Penalties

v	$\langle/ \mathrm{s}\rangle$	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	-1	1	0	-1	0	1

Greedy decoding

Algorithm example

Penalties

v	$\langle/ \mathrm{s}\rangle$	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	-1	1	0	-1	0	1

Greedy decoding

Algorithm example

Penalties

v	</s>	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	-1	1	0	-0.5	0	0.5

Greedy decoding

Algorithm example

Penalties

$$
\begin{array}{|l|ccccccc|}
\hline \mathrm{v} & \text { </s> } & \text { barks } & \text { loudly } & \text { the } & \text { dog } & \text { a } & \text { cat } \\
\mathrm{u}(\mathrm{v}) & 0 & -1 & 1 & 0 & -0.5 & 0 & 0.5 \\
\hline
\end{array}
$$

Greedy decoding

Algorithm example

Penalties

v	$\langle/ \mathrm{s}\rangle$	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	-1	1	0	-0.5	0	0.5

Greedy decoding

Algorithm example

Penalties

v	</s>	barks	loudly	the	dog	a	cat
$\mathrm{u}(\mathrm{v})$	0	-1	1	0	-0.5	0	0.5

Greedy decoding

Constraint Issue

Constraints do not capture all possible reorderings
Example: Add rule $\langle 5 \rightarrow$ cat a \rangle to forest. New derivation

Constraint Issue

Constraints do not capture all possible reorderings
Example: Add rule $\langle 5 \rightarrow$ cat a \rangle to forest. New derivation

Satisfies both constraints (1) and (2), but is not self-consistent.

Fix: In addition to bigrams, consider paths between terminal nodes

Example: Path marker $\langle 5 \downarrow, 10 \downarrow\rangle$ implies that between two word nodes, we move down from node 5 to node 10

New Constraints: Paths

Fix: In addition to bigrams, consider paths between terminal nodes

Example: Path marker $\langle 5 \downarrow, 10 \downarrow\rangle$ implies that between two word nodes, we move down from node 5 to node 10

New Constraints: Paths

Fix: In addition to bigrams, consider paths between terminal nodes

Example: Path marker $\langle 5 \downarrow, 10 \downarrow\rangle$ implies that between two word nodes, we move down from node 5 to node 10

New Constraints: Paths

Fix: In addition to bigrams, consider paths between terminal nodes

Example: Path marker $\langle 5 \downarrow, 10 \downarrow\rangle$ implies that between two word nodes, we move down from node 5 to node 10

New Constraints: Paths

Fix: In addition to bigrams, consider paths between terminal nodes

Example: Path marker $\langle 5 \downarrow, 10 \downarrow\rangle$ implies that between two word nodes, we move down from node 5 to node 10

Greedy Language Model with Paths

Step 1. Greedily choose best path each word

Greedy Language Model with Paths

Step 1. Greedily choose best path each word

Greedy Language Model with Paths

Step 1. Greedily choose best path each word

Greedy Language Model with Paths

Step 1. Greedily choose best path each word

Greedy Language Model with Paths

Step 1. Greedily choose best path each word

Greedy Language Model with Paths

Step 1. Greedily choose best path each word

Greedy Language Model with Paths

Step 1. Greedily choose best path each word

Greedy Language Model with Paths (continued)

Step 2. Find the best derivation over these elements

Greedy Language Model with Paths (continued)

Step 2. Find the best derivation over these elements

Efficiently Calculating Best Paths

There are too many paths to compute argmax directly, but we can compactly represent all paths as a graph

Graph is linear in the size of the grammar

- Green nodes represent leaving a word
- Red nodes represent entering a word
- Black nodes are intermediate paths

Best Paths

Goal: Find the best path between all word nodes (green and red)

Method: Run all-pairs shortest path to find best paths

Full Algorithm

Algorithm is very similar to simple bigram case. Penalty weights are associated with nodes in the graph instead of just bigram words

Theorem

If at any iteration the greedy paths agree with the derivation, then $\left(y^{(k)}\right)$ is the global optimum.

But what if it does not find the global optimum?

Convergence

The algorithm is not guaranteed to converge
May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge
May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge
May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge
May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge
May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge
May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge
May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge
May get stuck between solutions.

Convergence

The algorithm is not guaranteed to converge
May get stuck between solutions.

Can fix this by incrementally adding constraints to the problem

Tightening

Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)

Example:

Partitions

$A=\{2,6,7,8,9,10,11\}$
$B=\{ \}$

Tightening

Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)

Example:

Partitions

$A=\{2,6,7,8,9,10,11\}$
$B=\{ \}$

Tightening

Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)

Example:

Partitions

$A=\{2,6,7,8,9,10,11\}$
$B=\{ \}$

Tightening

Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)

Example:

Partitions

$A=\{2,6,7,8,9,10,11\}$
$B=\{ \}$

Tightening

Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)

Example:

Partitions

$A=\{2,6,7,8,9,10\}$
$B=\{11\}$

Tightening

Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)

Example:

Partitions

$A=\{2,6,7,8,9,10\}$
$B=\{11\}$

Tightening

Main idea: Keep partition sets (A and B). The parser treats all words in a partition as the same word.

- Initially place all words in the same partition.
- If the algorithm gets stuck, separate words that conflict
- Run the exact algorithm but only distinguish between partitions (much faster than running full exact algorithm)

Example:

Experiments

Properties:

- Exactness
- Translation Speed
- Comparison to Cube Pruning

Model:

- Tree-to-String translation model (Huang and Mi, 2010)
- Trained with MERT

Experiments:

- NIST MT Evaluation Set (2008)

Exactness

Percent Exact

LR Lagrangian Relaxation
ILP Integer Linear Programming
DP Exact Dynanic Programming
LP Linear Programming

Median Speed
Sentences Per Second

LR Lagrangian Relaxation
ILP Integer Linear Programming
DP Exact Dynanic Programming
LP Linear Programming

Comparison to Cube Pruning: Exactness

Percent Exact

LR Lagrangian Relaxation
Cube(50) Cube Pruning (Beam=50)
Cube(500) Cube Pruning (Beam=500)

Comparison to Cube Pruning: Median Speed

LR Lagrangian Relaxation
Cube(50) Cube Pruning (Beam=50)
Cube(500) Cube Pruning (Beam=500)

The Phrase-Based Decoding Problem

- We have a source-language sentence $x_{1}, x_{2}, \ldots, x_{N}$ (x_{i} is the i 'th word in the sentence)
- A phrase p is a tuple (s, t, e) signifying that words $x_{s} \ldots x_{t}$ have a target-language translation as e
- E.g., $p=\left(2,5\right.$, the dog) specifies that words $x_{2} \ldots x_{5}$ have a translation as the dog
- Output from a phrase-based model is a derivation

$$
y=p_{1} p_{2} \ldots p_{L}
$$

where p_{j} for $j=1 \ldots L$ are phrases. A derivation defines a translation $e(y)$ formed by concatenating the strings

$$
e\left(p_{1}\right) e\left(p_{2}\right) \ldots e\left(p_{L}\right)
$$

Scoring Derivations

- Each phrase p has a score $g(p)$.
- For two consecutive phrases $p_{k}=(s, t, e)$ and $p_{k+1}=\left(s^{\prime}, t^{\prime}, e^{\prime}\right)$, the distortion distance is $\delta\left(t, s^{\prime}\right)=\left|t+1-s^{\prime}\right|$
- The score for a derivation is

$$
f(y)=h(e(y))+\sum_{k=1}^{L} g\left(p_{k}\right)+\sum_{k=1}^{L-1} \eta \times \delta\left(t\left(p_{k}\right), s\left(p_{k+1}\right)\right)
$$

where $\eta \in \mathbb{R}$ is the distortion penalty, and $h(e(y))$ is the language model score

The Decoding Problem

- \mathcal{Y} is the set of all valid derivations
- For a derivation $y, y(i)$ is the number of times word i is translated
- A derivation $y=p_{1}, p_{2}, \ldots, p_{L}$ is valid if:
- $y(i)=1$ for $i=1 \ldots N$
- For each pair of consecutive phrases p_{k}, p_{k+1} for $k=1 \ldots L-1$, we have $\delta\left(t\left(p_{k}\right), s\left(p_{k+1}\right)\right) \leq d$, where d is the distortion limit.
- Decoding problem is to find

$$
\arg \max _{y \in \mathcal{Y}} f(y)
$$

Exact Dynamic Programming

- We can find

$$
\arg \max _{y \in \mathcal{Y}} f(y)
$$

using dynamic programming

- But, the runtime (and number of states) is exponential in N.
- Dynamic programming states are of the form

$$
\left(w_{1}, w_{2}, b, r\right)
$$

where

- w_{1}, w_{2} are last two words of a hypothesis
- b is a bit-string of length N, recording which words have been translated (2^{N} possibilities)
- r is the end-point of the last phrase in the hypothesis

A Lagrangian Relaxation Algorithm

- Define \mathcal{Y}^{\prime} to be the set of derivations such that:
- $\sum_{i=1}^{N} y(i)=N$
- For each pair of consecutive phrases p_{k}, p_{k+1} for $k=1 \ldots L-1$, we have $\delta\left(t\left(p_{k}\right), s\left(p_{k+1}\right)\right) \leq d$, where d is the distortion limit.
- Notes:
- We have dropped the $y(i)=1$ constraints.
- We have $\mathcal{Y} \subset \mathcal{Y}^{\prime}$

Dynamic Programming over \mathcal{Y}^{\prime}

- We can find

$$
\arg \max _{y \in \mathcal{Y}^{\prime}} f(y)
$$

efficiently, using dynamic programming

- Dynamic programming states are of the form

$$
\left(w_{1}, w_{2}, n, r\right)
$$

where

- w_{1}, w_{2} are last two words of a hypothesis
- n is the length of the partial hypothesis
- r is the end-point of the last phrase in the hypothesis

A Lagrangian Relaxation Algorithm (continued)

- The original decoding problem is

$$
\arg \max _{y \in \mathcal{Y}} f(y)
$$

- We can rewrite this as

$$
\arg \max _{y \in \mathcal{Y}^{\prime}} f(y) \text { such that } \forall i, y(i)=1
$$

- We deal with the $y(i)=1$ constraints using Lagrangian relaxation

A Lagrangian Relaxation Algorithm (continued)

The Lagrangian is

$$
L(u, y)=f(y)+\sum_{i} u(i)(y(i)-1)
$$

The dual objective is then

$$
L(u)=\max _{y \in \mathcal{Y}^{\prime}} L(u, y)
$$

and the dual problem is to solve

$$
\min _{u} L(u)
$$

The Algorithm

$$
\begin{aligned}
& \text { Initialization: } u^{0}(i) \leftarrow 0 \quad \text { for } i=1 \ldots N \\
& \text { for } t=1 \ldots T \\
& y^{t}=\operatorname{argmax}_{y \in \mathcal{Y}^{\prime}} L\left(u^{t-1}, y\right) \\
& \text { if } y^{t}(i)=1 \text { for } i=1 \ldots N \\
& \quad \text { return } y^{t} \\
& \text { else } \\
& \quad \text { for } i=1 \ldots N \\
& \quad u^{t}(i)=u^{t-1}(i)-\alpha^{t}\left(y^{t}(i)-1\right)
\end{aligned}
$$

Figure: The decoding algorithm. $\alpha^{t}>0$ is the step size at the t^{\prime} th iteration.

An Example Run of the Algorithm

Tightening the Relaxation

- In some cases, the relaxation is not tight, and the algorithm will not converge to $y(i)=1$ for $i=1 \ldots N$
- Our solution: incrementally add hard constraints until the relaxation is tight
- Definition: for any set $\mathcal{C} \subseteq\{1,2, \ldots, N\}$,

$$
\mathcal{Y}_{\mathcal{C}}^{\prime}=\left\{y: y \in \mathcal{Y}^{\prime}, \quad \text { and } \quad \forall i \in \mathcal{C}, y(i)=1\right\}
$$

- We can find

$$
\arg \max _{y \in \mathcal{Y}_{\mathcal{C}}^{\prime}} f(y)
$$

using dynamic programming, with a $2^{|\mathcal{C}|}$ increase in the number of states

- Goal: find a small set \mathcal{C} such that Lagrangian relaxation with $\mathcal{Y}_{\mathcal{C}}^{\prime}$ returns an exact solution

An Example Run of the Algorithm

The Algorithm with Constraint Generation

$$
\begin{aligned}
& \text { Optimize }(\mathcal{C}, u) \\
& \text { while (dual value still improving) } \\
& y^{*}=\operatorname{argmax}_{y \in \mathcal{Y}_{\mathcal{C}}^{\prime}} L(u, y) \\
& \text { if } y^{*}(i)=1 \text { for } i=1 \ldots N \quad \text { return } y^{*} \\
& \text { else for } i=1 \ldots N \\
& \quad u(i)=u(i)-\alpha\left(y^{*}(i)-1\right) \\
& \text { count }(i)=0 \text { for } i=1 \ldots N \\
& \text { for } k=1 \ldots K \\
& y^{*}=\operatorname{argmax}_{y \in \mathcal{Y}_{\mathcal{C}}^{\prime}} L(u, y) \\
& \text { if } y^{*}(i)=1 \text { for } i=1 \ldots N \quad \text { return } y^{*} \\
& \text { else for } i=1 \ldots N \\
& \quad u(i)=u(i)-\alpha\left(y^{*}(i)-1\right) \\
& \quad \operatorname{count}(i)=\operatorname{count}(i)+\left[\left[y^{*}(i) \neq 1\right]\right] \\
& \text { Let } \mathcal{C}^{\prime}=\operatorname{set} \text { of } \mathrm{G} i \text { s that have the largest value for } \\
& \operatorname{count}(i) \text { and that are not in } \mathcal{C} \\
& \text { return } O p t i m i z e\left(\mathcal{C} \cup \mathcal{C}^{\prime}, u\right)
\end{aligned}
$$

Number of Constraints Required

\# cons.	$1-10$ words	$11-20$ words	$21-30$ words	$31-40$ words	$41-50$ words		All sentences	
$0-0$	$183(98.9 \%)$	$511(91.6 \%)$	$438(77.4 \%)$	$222(64.0 \%)$	$82(48.8 \%)$	$1,436(78.7 \%)$	78.7%	
$1-3$	$2(1.1 \%)$	$45(8.1 \%)$	$94(16.6 \%)$	$87(25.1 \%)$	$50(29.8 \%)$	$278(15.2 \%)$	94.0%	
$4-6$	$0(0.0 \%)$	$2(0.4 \%)$	$27(4.8 \%)$	$24(6.9 \%)$	$19(11.3 \%)$	$72(3.9 \%)$	97.9%	
$7-9$	$0(0.0 \%)$	$0(0.0 \%)$	$7(1.2 \%)$	$13(3.7 \%)$	$12(7.1 \%)$	$32(1.8 \%)$	99.7%	
x	$0(0.0 \%)$	$0(0.0 \%)$	$0(0.0 \%)$	$1(0.3 \%)$	$5(3.0 \%)$	$6(0.3 \%)$	100.0%	

Table 2: Table showing the number of constraints added before convergence of the algorithm in Figure 3, broken down by sentence length. Note that a maximum of 3 constraints are added at each recursive call, but that fewer than 3 constraints are added in cases where fewer than 3 constraints have count $(i)>0$. x indicates the sentences that fail to converge after 250 iterations. 78.7% of the examples converge without adding any constraints.

Time Required

\# cons.	1-10 words		11-20 words		21-30 words		31-40 words		41-50 words		All sentences	
	A*	w/o										
0-0	0.8	0.8	9.7	10.7	47.0	53.7	153.6	178.6	402.6	492.4	64.6	76.1
1-3	2.4	2.9	23.2	28.0	80.9	102.3	277.4	360.8	686.0	877.7	241.3	309.7
4-6	0.0	0.0	28.2	38.8	111.7	163.7	309.5	575.2	1,552.8	1,709.2	555.6	699.5
7-9	0.0	0.0	0.0	0.0	166.1	500.4	361.0	,467.6	1,167.2	,222.4	620.7	914.1
mean	0.8	0.9	10.9	12.3	57.2	72.6	203.4	299.2	679.9	953.4	120.9	168.9
median	0.7	0.7	8.9	9.9	48.3	54.6	169.7	202.6	484.0	606.5	35.2	40.0

Table 3: The average time (in seconds) for decoding using the algorithm in Figure 3, with and without A* algorithm, broken down by sentence length and the number of constraints that are added. A^{*} indicates speeding up using A^{*} search; w/o denotes without using A^{*}.

Comparison to LP/ILP Decoding

method		ILP		LP		
set	length	mean	median	mean	median	$\%$ frac.
$\mathcal{Y}^{\prime \prime}$	$1-10$	275.2	132.9	10.9	4.4	12.4%
	$11-15$	$2,707.8$	$1,138.5$	177.4	66.1	40.8%
	$16-20$	$20,583.1$	$3,692.6$	$1,374.6$	637.0	59.7%
\mathcal{Y}^{\prime}	$1-10$	257.2	157.7	18.4	8.9	1.1%
	$11-15$	N/A	N/A	476.8	161.1	3.0%

Table 4: Average and median time of the LP/ILP solver (in seconds). \% frac. indicates how often the LP gives a fractional answer. \mathcal{Y}^{\prime} indicates the dynamic program using set \mathcal{Y}^{\prime} as defined in Section 4.1, and $\mathcal{Y}^{\prime \prime}$ indicates the dynamic program using states $\left(w_{1}, w_{2}, n, r\right)$. The statistics for ILP for length 16-20 is based on 50 sentences.

Number of Iterations Required

\# iter.	$1-10$ words	$11-20$ words	$21-30$ words	$31-40$ words	$41-50$ words		All sentences	
$0-7$	$166(89.7 \%)$	$219(39.2 \%)$	$34(6.0 \%)$	$2(0.6 \%)$	$0(0.0 \%)$	$421(23.1 \%)$	23.1%	
$8-15$	$17(9.2 \%)$	$187(33.5 \%)$	$161(28.4 \%)$	$30(8.6 \%)$	$3(1.8 \%)$	$398(21.8 \%)$	44.9%	
$16-30$	$1(0.5 \%)$	$93(16.7 \%)$	$208(36.7 \%)$	$112(32.3 \%)$	$22(13.1 \%)$	$436(23.9 \%)$	68.8%	
$31-60$	$1(0.5 \%)$	$52(9.3 \%)$	$105(18.6 \%)$	$99(28.5 \%)$	$62(36.9 \%)$	$319(17.5 \%)$	86.3%	
$61-120$	$0(0.0 \%)$	$7(1.3 \%)$	$54(9.5 \%)$	$89(25.6 \%)$	$45(26.8 \%)$	$195(10.7 \%)$	97.0%	
$121-250$	$0(0.0 \%)$	$0(0.0 \%)$	$4(0.7 \%)$	$14(4.0 \%)$	$31(18.5 \%)$	$49(2.7 \%)$	99.7%	
x	$0(0.0 \%)$	$0(0.0 \%)$	$0(0.0 \%)$	$1(0.3 \%)$	$5(3.0 \%)$	$6(0.3 \%)$	100.0%	

Table 1: Table showing the number of iterations taken for the algorithm to converge. x indicates sentences that fail to converge after 250 iterations. of the examples converge within 120 iterations.

Summary

presented dual decomposition as a method for decoding in NLP

formal guarantees

- gives certificate or approximate solution
- can improve approximate solutions by tightening relaxation
efficient algorithms
- uses fast combinatorial algorithms
- can improve speed with lazy decoding
widely applicable
- demonstrated algorithms for a wide range of NLP tasks (parsing, tagging, alignment, mt decoding)

References I

Y. Chang and M. Collins. Exact Decoding of Phrase-based Translation Models through Lagrangian Relaxation. In To appear proc. of EMNLP, 2011.
J. DeNero and K. Macherey. Model-Based Aligner Combination Using Dual Decomposition. In Proc. ACL, 2011.

Michael Held and Richard M. Karp. The traveling-salesman problem and minimum spanning trees: Part ii. Mathematical Programming, 1:6-25, 1971. ISSN 0025-5610. URL http://dx.doi.org/10.1007/BF01584070. 10.1007/BF01584070.
D. Klein and C.D. Manning. Factored A* Search for Models over Sequences and Trees. In Proc IJCAI, volume 18, pages 1246-1251. Citeseer, 2003.
N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy minimization and beyond via dual decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010. ISSN 0162-8828.

References II

Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag. Dual decomposition for parsing with non-projective head automata. In EMNLP, 2010. URL http://www.aclweb.org/anthology/D10-1125.
B.H. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer Verlag, 2008.
C. Lemaréchal. Lagrangian Relaxation. In Computational Combinatorial Optimization, Optimal or Provably Near-Optimal Solutions [based on a Spring School], pages 112-156, London, UK, 2001. Springer-Verlag. ISBN 3-540-42877-1.
Angelia Nedić and Asuman Ozdaglar. Approximate primal solutions and rate analysis for dual subgradient methods. SIAM Journal on Optimization, 19(4):1757-1780, 2009.
Christopher Raphael. Coarse-to-fine dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23: 1379-1390, 2001.

References III

A.M. Rush and M. Collins. Exact Decoding of Syntactic Translation Models through Lagrangian Relaxation. In Proc. ACL, 2011.
A.M. Rush, D. Sontag, M. Collins, and T. Jaakkola. On Dual Decomposition and Linear Programming Relaxations for Natural Language Processing. In Proc. EMNLP, 2010.
Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Applied Mathematics, 52(1):83 - 106, 1994.
D.A. Smith and J. Eisner. Dependency Parsing by Belief Propagation. In Proc. EMNLP, pages 145-156, 2008. URL http://www.aclweb.org/anthology/D08-1016.
D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP relaxations for MAP using message passing. In Proc. UAI, 2008.

