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Decoding complexity

focus: decoding problem for natural language tasks

y∗ = arg max
y

f (y)

motivation:

• richer model structure often leads to improved accuracy

• exact decoding for complex models tends to be intractable



Decoding tasks
many common problems are intractable to decode exactly

high complexity

• combined parsing and part-of-speech tagging (Rush et al.,
2010)

• “loopy” HMM part-of-speech tagging

• syntactic machine translation (Rush and Collins, 2011)

NP-Hard

• symmetric HMM alignment (DeNero and Macherey, 2011)

• phrase-based translation (Chang and Collins, 2011)

• higher-order non-projective dependency parsing (Koo et al.,
2010)

in practice:

• approximate decoding methods (coarse-to-fine, beam search,
cube pruning, gibbs sampling, belief propagation)

• approximate models (mean field, variational models)



Motivation

cannot hope to find exact algorithms (particularly when NP-Hard)

aim: develop decoding algorithms with formal guarantees

method:

• derive fast algorithms that provide certificates of optimality

• show that for practical instances, these algorithms often yield
exact solutions

• provide strategies for improving solutions or finding
approximate solutions when no certificate is found

dual decomposition helps us develop algorithms of this form



Lagrangian relaxation (Held and Karp, 1971)

important method from combinatorial optimization

initially used for traveling salesman problems

optimal tour - NP-Hard
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Dual decomposition (Komodakis et al., 2010; Lemaréchal, 2001)

goal: solve complicated optimization problem

y∗ = arg max
y

f (y)

method: decompose into subproblems, solve iteratively

benefit: can choose decomposition to provide “easy” subproblems

aim for simple and efficient combinatorial algorithms

• dynamic programming

• minimum spanning tree

• shortest path

• min-cut

• bipartite match

• etc.



Related work

there are related methods used NLP with similar motivation
related methods:

• belief propagation (particularly max-product) (Smith and
Eisner, 2008)

• factored A* search (Klein and Manning, 2003)

• exact coarse-to-fine (Raphael, 2001)

aim to find exact solutions without exploring the full search space



Tutorial outline

focus:

• developing dual decomposition algorithms for new NLP tasks

• understanding formal guarantees of the algorithms

• extensions to improve exactness and select solutions

outline:

1. worked algorithm for combined parsing and tagging

2. important theorems and formal derivation

3. more examples from parsing, sequence labeling, MT

4. practical considerations for implementing dual decomposition

5. relationship to linear programming relaxations

6. further variations and advanced examples



1. Worked example

aim: walk through a dual decomposition algorithm for combined
parsing and part-of-speech tagging

• introduce formal notation for parsing and tagging

• give assumptions necessary for decoding

• step through a run of the dual decomposition algorithm



Combined parsing and part-of-speech tagging
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goal: find parse tree that optimizes

score(S → NP VP) + score(VP → V NP) +

...+ score(N→ V) + score(N→ United) + ...



Constituency parsing
notation:

• Y is set of constituency parses for input
• y ∈ Y is a valid parse
• f (y) scores a parse tree

goal:
arg max

y∈Y
f (y)

example: a context-free grammar for constituency parsing
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Part-of-speech tagging
notation:

• Z is set of tag sequences for input

• z ∈ Z is a valid tag sequence

• g(z) scores of a tag sequence

goal:
arg max

z∈Z
g(z)

example: an HMM for part-of speech tagging

United1 flies2 some3 large4 jet5

N V D A N



Identifying tags
notation: identify the tag labels selected by each model

• y(i , t) = 1 when parse y selects tag t at position i

• z(i , t) = 1 when tag sequence z selects tag t at position i

example: a parse and tagging with y(4,A) = 1 and z(4,A) = 1
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Combined optimization

goal:
arg max

y∈Y,z∈Z
f (y) + g(z)

such that for all i = 1 . . . n, t ∈ T ,

y(i , t) = z(i , t)

i.e. find the best parse and tagging pair that agree on tag labels

equivalent formulation:

arg max
y∈Y

f (y) + g(l(y))

where l : Y → Z extracts the tag sequence from a parse tree



Dynamic programming intersection
can solve by solving the product of the two models

example:

• parsing model is a context-free grammar

• tagging model is a first-order HMM

• can solve as CFG and finite-state automata intersection

replace S → NP VP
with
SN,N → NPN,NVPV,N
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Parsing assumption
the structure of Y could be CFG, TAG, etc.

assumption: optimization with u can be solved efficiently

arg max
y∈Y

f (y) +
∑

i ,t

u(i , t)y(i , t)

generally benign since u can be incorporated into the structure of f

example: CFG with rule scoring function h

f (y) =
∑

X→Y Z∈y
h(X → Y Z ) +

∑

(i ,X )∈y
h(X → wi )

where

arg maxy∈Y f (y) +
∑

i ,t

u(i , t)y(i , t) =

arg maxy∈Y
∑

X→Y Z∈y
h(X → Y Z ) +

∑

(i ,X )∈y
(h(X → wi ) + u(i ,X ))



Tagging assumption
we make a similar assumption for the set Z
assumption: optimization with u can be solved efficiently

arg max
z∈Z

g(z)−
∑

i ,t

u(i , t)z(i , t)

example: HMM with scores for transitions T and observations O

g(z) =
∑

t→t′∈z
T (t → t ′) +

∑

(i ,t)∈z
O(t → wi )

where

arg maxz∈Z g(z)−
∑

i ,t

u(i , t)z(i , t) =

arg maxz∈Z
∑

t→t′∈z
T (t → t ′) +

∑

(i ,t)∈z
(O(t → wi )− u(i , t))



Dual decomposition algorithm

Set u(1)(i , t) = 0 for all i , t ∈ T

For k = 1 to K

y (k) ← arg max
y∈Y

f (y) +
∑

i ,t

u(k)(i , t)y(i , t) [Parsing]

z(k) ← arg max
z∈Z

g(z)−
∑

i ,t

u(k)(i , t)z(i , t) [Tagging]

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Else u(k+1)(i , t)← u(k)(i , t)− αk(y (k)(i , t)− z(k)(i , t))



CKY Parsing
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y∗ = arg max
y∈Y

(f (y) +
∑

i ,t

u(i , t)y(i , t))

Viterbi Decoding

United1 flies2 some3 large4 jet5
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z∗ = arg max
z∈Z

(g(z)−
∑

i ,t

u(i , t)z(i , t))

Penalties
u(i , t) = 0 for all i ,t

Iteration 1

u(1,A) -1

u(1,N) 1

u(2,N) -1

u(2,V ) 1

u(5,V ) -1

u(5,N) 1

Iteration 2

u(5,V ) -1

u(5,N) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i
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y(i , t) = 1 if y contains tag t at position i
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Key
f (y) ⇐ CFG g(z) ⇐ HMM
Y ⇐ Parse Trees Z ⇐ Taggings
y(i , t) = 1 if y contains tag t at position i
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Main theorem

theorem: if at any iteration, for all i , t ∈ T

y (k)(i , t) = z(k)(i , t)

then (y (k), z(k)) is the global optimum

proof: focus of the next section
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2. Formal properties

aim: formal derivation of the algorithm given in the previous
section

• derive Lagrangian dual

• prove three properties

I upper bound

I convergence

I optimality

• describe subgradient method



Lagrangian
goal:

arg max
y∈Y,z∈Z

f (y) + g(z) such that y(i , t) = z(i , t)

Lagrangian:

L(u, y , z) = f (y) + g(z) +
∑

i ,t

u(i , t) (y(i , t)− z(i , t))

redistribute terms

L(u, y , z) =


f (y) +

∑

i ,t

u(i , t)y(i , t)


 +


g(z)−

∑

i ,t

u(i , t)z(i , t)






Lagrangian dual

Lagrangian:

L(u, y , z) =


f (y) +

∑

i ,t

u(i , t)y(i , t)


 +


g(z)−

∑

i ,t

u(i , t)z(i , t)




Lagrangian dual:

L(u) = max
y∈Y,z∈Z

L(u, y , z)

= max
y∈Y


f (y) +

∑

i ,t

u(i , t)y(i , t)


 +

max
z∈Z


g(z)−

∑

i ,t

u(i , t)z(i , t)






Theorem 1. Upper bound

define:

• y∗, z∗ is the optimal combined parsing and tagging solution
with y∗(i , t) = z∗(i , t) for all i , t

theorem: for any value of u

L(u) ≥ f (y∗) + g(z∗)

L(u) provides an upper bound on the score of the optimal solution

note: upper bound may be useful as input to branch and bound or
A* search



Theorem 1. Upper bound (proof)

theorem: for any value of u, L(u) ≥ f (y∗) + g(z∗)

proof:

L(u) = max
y∈Y,z∈Z

L(u, y , z) (1)

≥ max
y∈Y,z∈Z:y=z

L(u, y , z) (2)

= max
y∈Y,z∈Z:y=z

f (y) + g(z) (3)

= f (y∗) + g(z∗) (4)



Formal algorithm (reminder)

Set u(1)(i , t) = 0 for all i , t ∈ T

For k = 1 to K

y (k) ← arg max
y∈Y

f (y) +
∑

i ,t

u(k)(i , t)y(i , t) [Parsing]

z(k) ← arg max
z∈Z

g(z)−
∑

i ,t

u(k)(i , t)z(i , t) [Tagging]

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Else u(k+1)(i , t)← u(k)(i , t)− αk(y (k)(i , t)− z(k)(i , t))



Theorem 2. Convergence
notation:

• u(k+1)(i , t)← u(k)(i , t) + αk(y (k)(i , t)− z(k)(i , t)) is update

• u(k) is the penalty vector at iteration k

• αk is the update rate at iteration k

theorem: for any sequence α1, α2, α3, . . . such that

lim
t→∞

αt = 0 and
∞∑

t=1

αt =∞,

we have
lim
t→∞

L(ut) = min
u

L(u)

i.e. the algorithm converges to the tightest possible upper bound

proof: by subgradient convergence (next section)



Dual solutions

define:

• for any value of u

yu = arg max
y∈Y


f (y) +

∑

i ,t

u(i , t)y(i , t)




and

zu = arg max
z∈Z


g(z)−

∑

i ,t

u(i , t)z(i , t)




• yu and zu are the dual solutions for a given u



Theorem 3. Optimality

theorem: if there exists u such that

yu(i , t) = zu(i , t)

for all i , t then

f (yu) + g(zu) = f (y∗) + g(z∗)

i.e. if the dual solutions agree, we have an optimal solution

(yu, zu)



Theorem 3. Optimality (proof)

theorem: if u such that yu(i , t) = zu(i , t) for all i , t then

f (yu) + g(zu) = f (y∗) + g(z∗)

proof: by the definitions of yu and zu

L(u) = f (yu) + g(zu) +
∑

i ,t

u(i , t)(yu(i , t)− zu(i , t))

= f (yu) + g(zu)

since L(u) ≥ f (y∗) + g(z∗) for all values of u

f (yu) + g(zu) ≥ f (y∗) + g(z∗)

but y∗ and z∗ are optimal

f (yu) + g(zu) ≤ f (y∗) + g(z∗)



Dual optimization

Lagrangian dual:

L(u) = max
y∈Y,z∈Z

L(u, y , z)

= max
y∈Y


f (y) +

∑

i ,t

u(i , t)y(i , t)


 +

max
z∈Z


g(z)−

∑

i ,t

u(i , t)z(i , t)




goal: dual problem is to find the tightest upper bound

min
u

L(u)



Dual subgradient

L(u) = max
y∈Y


f (y) +

∑

i,t

u(i , t)y(i , t)


 + max

z∈Z


g(z)−

∑

i,t

u(i , t)z(i , t)




properties:
• L(u) is convex in u (no local minima)
• L(u) is not differentiable (because of max operator)

handle non-differentiability by using subgradient descent

define: a subgradient of L(u) at u is a vector gu such that for all v

L(v) ≥ L(u) + gu · (v − u)



Subgradient algorithm

L(u) = max
y∈Y


f (y) +

∑

i,t

u(i , t)y(i , t)


 + max

z∈Z


g(z)−

∑

i,j

u(i , t)z(i , t)




recall, yu and zu are the argmax’s of the two terms

subgradient:

gu(i , t) = yu(i , t)− zu(i , t)

subgradient descent: move along the subgradient

u′(i , t) = u(i , t)− α (yu(i , t)− zu(i , t))

guaranteed to find a minimum with conditions given earlier for α



3. More examples

aim: demonstrate similar algorithms that can be applied to other
decoding applications

• context-free parsing combined with dependency parsing

• corpus-level part-of-speech tagging

• combined translation alignment



Combined constituency and dependency parsing
(Rush et al., 2010)

setup: assume separate models trained for constituency and
dependency parsing

problem: find constituency parse that maximizes the sum of the
two models

example:

• combine lexicalized CFG with second-order dependency parser



Lexicalized constituency parsing
notation:

• Y is set of lexicalized constituency parses for input
• y ∈ Y is a valid parse
• f (y) scores a parse tree

goal:
arg max

y∈Y
f (y)

example: a lexicalized context-free grammar

S(flies)

NP(United)

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet



Dependency parsing

define:

• Z is set of dependency parses for input

• z ∈ Z is a valid dependency parse

• g(z) scores a dependency parse

example:

*0 United1 flies2 some3 large4 jet5



Identifying dependencies
notation: identify the dependencies selected by each model

• y(i , j) = 1 when word i modifies of word j in constituency
parse y

• z(i , j) = 1 when word i modifies of word j in dependency
parse z

example: a constituency and dependency parse with y(3, 5) = 1
and z(3, 5) = 1

S(flies)

NP(United)

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y

*0 United1 flies2 some3 large4 jet5

z



Combined optimization

goal:
arg max

y∈Y,z∈Z
f (y) + g(z)

such that for all i = 1 . . . n, j = 0 . . . n,

y(i , j) = z(i , j)



CKY Parsing
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(f (y) +
∑

i ,j

u(i , j)y(i , j))

Dependency Parsing

*0 United1 flies2 some3 large4 jet5

z∗ = arg max
z∈Z

(g(z)−
∑

i ,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(2, 3) -1

u(5, 3) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (y) ⇐ CFG g(z) ⇐ Dependency Model
Y ⇐ Parse Trees Z ⇐ Dependency Trees
y(i , j) = 1 if y contains dependency i , j
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Integrated Constituency and Dependency Parsing: Accuracy
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I Dual Decomposition



Corpus-level tagging

setup: given a corpus of sentences and a trained sentence-level
tagging model

problem: find best tagging for each sentence, while at the same
time enforcing inter-sentence soft constraints

example:

• test-time decoding with a trigram tagger

• constraint that each word type prefer a single POS tag



Corpus-level tagging

English is my first langauge

He studies language arts now

Language makes us human beings

N



Sentence-level decoding
notation:

• Yi is set of tag sequences for input sentence i
• Y = Y1× . . .×Ym is set of tag sequences for the input corpus
• Y ∈ Y is a valid tag sequence for the corpus
• F (Y ) =

∑

i

f (Yi ) is the score for tagging the whole corpus

goal:
arg max

Y∈Y
F (Y )

example: decode each sentence with a trigram tagger

English

N

is

V

my

P

first

A

language

N
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Inter-sentence constraints
notation:

• Z is set of possible assignments of tags to word types

• z ∈ Z is a valid tag assignment

• g(z) is a scoring function for assignments to word types

example: an MRF model that encourages words of the same type
to choose the same tag

z1

language
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language
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language
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z2

language
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A
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Identifying word tags
notation: identify the tag labels selected by each model

• Ys(i , t) = 1 when the tagger for sentence s at position i
selects tag t

• z(s, i , t) = 1 when the constraint assigns at sentence s
position i the tag t

example: a parse and tagging with Y1(5,N) = 1 and
z(1, 5,N) = 1

English is my first language

He studies language arts now

Y

language language language

z



Combined optimization

goal:
arg max

Y∈Y,z∈Z
F (Y ) + g(z)

such that for all s = 1 . . .m, i = 1 . . . n, t ∈ T ,

Ys(i , t) = z(s, i , t)
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Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i
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F (Y ) ⇐ Tagging model g(z) ⇐ MRF
Y ⇐ Sentence-level tagging Z ⇐ Inter-sentence constraints
Ys(i , t) = 1 if sentence s has tag t at position i



Combined alignment (DeNero and Macherey, 2011)

setup: assume separate models trained for English-to-French and
French-to-English alignment

problem: find an alignment that maximizes the score of both
models

example:

• HMM models for both directional alignments (assume correct
alignment is one-to-one for simplicity)



English-to-French alignment
define:

• Y is set of all possible English-to-French alignments
• y ∈ Y is a valid alignment
• f (y) scores of the alignment

example: HMM alignment

The1 ugly2 dog3 has4 red5 fur6

Le1 laid3 chien2 a4 rouge6 fourrure5



French-to-English alignment
define:

• Z is set of all possible French-to-English alignments
• z ∈ Z is a valid alignment
• g(z) scores of an alignment

example: HMM alignment

Le1 chien2 laid3 a4 fourrure5 rouge6

The1 ugly2 dog3 has4 fur6 red5



Identifying word alignments
notation: identify the tag labels selected by each model

• y(i , j) = 1 when e-to-f alignment y selects French word i to
align with English word j

• z(i , j) = 1 when f-to-e alignment z selects French word i to
align with English word j

example: two HMM alignment models with y(6, 5) = 1 and
z(6, 5) = 1



Combined optimization

goal:
arg max

y∈Y,z∈Z
f (y) + g(z)

such that for all i = 1 . . . n, j = 1 . . . n,

y(i , j) = z(i , j)



English-to-French

y∗ = argmax
y∈Y

(f (y) +
∑

i,j

u(i , j)y(i , j))

French-to-English

z∗ = argmax
z∈Z

(g(z)−
∑

i,j

u(i , j)z(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(3, 2) -1

u(2, 2) 1

u(2, 3) -1

u(3, 3) 1

Key

f (y) ⇐ HMM Alignment g(z) ⇐ HMM Alignment
Y ⇐ English-to-French model Z ⇐ French-to-English model
y(i , j) = 1 if French word i aligns to English word j
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y(i , j) = 1 if French word i aligns to English word j
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4. Practical issues

aim: overview of practical dual decomposition techniques

• tracking the progress of the algorithm

• choice of update rate αk

• lazy update of dual solutions

• extracting solutions if algorithm does not converge



Optimization tracking

at each stage of the algorithm there are several useful values

track:

• y (k), z(k) are current dual solutions

• L(u(k)) is the current dual value

• y (k), l(y (k)) is a potential primal feasible solution

• f (y (k)) + g(l(y (k))) is the potential primal value



Tracking example
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example run from syntactic machine translation (later in talk)

• current primal
f (y (k)) + g(l(y (k)))

• current dual
L(u(k))



Optimization progress

useful signals:

• L(u(k))− L(u(k−1)) is the dual change (may be positive)

• min
k

L(u(k)) is the best dual value (tightest upper bound)

• max
k

f (y (k)) + g(l(y (k))) is the best primal value

the optimal value must be between the best dual and primal values



Progress example
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f (y (k)) + g(l(y (k)))

best dual

min
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L(u(k))

gap

min
k

L(uk) −

max
k

f (y (k)) + g(l(y (k))



Update rate

choice of αk has important practical consequences

• αk too high causes dual value to fluctuate

• αk too low means slow progress
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Update rate

practical: find a rate that is robust to varying inputs

• αk = c (constant rate) can be very fast, but hard to find
constant that works for all problems

• αk =
c

k
(decreasing rate) often cuts rate too aggressively,

lowers value even when making progress
• rate based on dual progress

I αk =
c

t + 1
where t < k is number of iterations where dual

value increased
I robust in practice, reduces rate when dual value is fluctuating



Lazy decoding

idea: don’t recompute y (k) or z(k) from scratch each iteration

lazy decoding: if subgradient u(k) is sparse, then y (k) may be
very easy to compute from y (k−1)

use:

• helpful if y or z factor naturally into independent components

• can be important for fast decompositions



Lazy decoding example

recall corpus-level tagging
example

at this iteration, only
sentence 2 receives a
weight update

with lazy decoding

Y
(k)
1 ← Y

(k−1)
1

Y
(k)
3 ← Y

(k−1)
3



Lazy decoding results

lazy decoding is critical for the efficiency of some applications
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recomputation statistics for non-projective dependency parsing



Approximate solution

upon agreement the solution is exact, but this may not occur

otherwise, there is an easy way to find an approximate solution

choose: the structure y (k ′) where

k ′ = arg max
k

f (y (k)) + g(l(y (k)))

is the iteration with the best primal score

guarantee: the solution yk
′

is non-optimal by at most

(min
k

L(uk))− (f (y (k ′)) + g(l(y (k ′))))

there are other methods to estimate solutions, for instance by
averaging solutions (see Nedić and Ozdaglar (2009))



Choosing best solution
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non-exact example from syntactic translation

best approximate primal solution occurs at iteration 63



Early stopping results

early stopping results for constituency and dependency parsing
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Early stopping results

early stopping results for non-projective dependency parsing
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Tightening

instead of using approximate solution, can tighten the algorithm

may help find an exact solution at the cost of added complexity

this technique is the focus of the next section



5. Linear programming

aim: explore the connections between dual decomposition and
linear programming

• basic optimization over the simplex

• formal properties of linear programming

• full example with fractional optimal solutions

• tightening linear program relaxations



Simplex
define:

• ∆y ⊂ R|Y| is the simplex over Y where α ∈ ∆y implies

αy ≥ 0 and
∑

y

αy = 1

• α is distribution over Y
• ∆z is the simplex over Z
• δy : Y → ∆y maps elements to the simplex

example:

Y = {y1, y2, y3}
vertices

• δy (y1) = (1, 0, 0)

• δy (y2) = (0, 1, 0)

• δy (y3) = (0, 0, 1)

δy (y1)

δy (y2) δy (y3)

∆y



Theorem 1. Simplex linear program
optimize over the simplex ∆y instead of the discrete sets Y

goal: optimize linear program

max
α∈∆y

∑

y

αy f (y)

theorem:
max
y∈Y

f (y) = max
α∈∆y

∑

y

αy f (y)

proof: points in Y correspond to the exteme points of simplex

{δy (y) : y ∈ Y}

linear program has optimum at extreme point

note: finding the highest scoring distribution α over Y
proof shows that best distribution chooses a single parse



Combined linear program

optimize over the simplices ∆y and ∆z instead of the discrete sets
Y and Z

goal: optimize linear program

max
α∈∆y ,β∈∆z

∑

y

αy f (y) +
∑

z

βzg(z)

such that for all i , t

∑

y

αyy(i , t) =
∑

z

βzz(i , t)

note: the two distributions must match in expectation of POS tags

the best distributions α∗,β∗ are possibly no longer a single parse
tree or tag sequence



Lagrangian

Lagrangian:

M(u, α, β) =
∑
y

αy f (y) +
∑
z

βzg(z) +
∑
i,t

u(i , t)

(∑
y

αyy(i , t)−
∑
z

βzz(i , t)

)

=

(∑
y

αy f (y) +
∑
i,t

u(i , t)
∑
y

αyy(i , t)

)
+

(∑
z

βzg(z)−
∑
i,t

u(i , t)
∑
z

βzz(i , t)

)

Lagrangian dual:

M(u) = max
α∈∆y ,β∈∆z

M(u, α, β)



Theorem 2. Strong duality

define:

• α∗, β∗ is the optimal assignment to α, β in the linear program

theorem:
min
u

M(u) =
∑

y

α∗y f (y) +
∑

z

β∗zg(z)

proof: by linear programming duality



Theorem 3. Dual relationship

theorem: for any value of u,

M(u) = L(u)

note: solving the original Lagrangian dual also solves dual of the
linear program



Theorem 3. Dual relationship (proof sketch)

focus on Y term in Lagrangian

L(u) = max
y∈Y


f (y) +

∑

i,t

u(i , t)y(i , t)


 + . . .

M(u) = max
α∈∆y


∑

y

αy f (y) +
∑

i,t

u(i , t)
∑

y

αyy(i , t)


 + . . .

by theorem 1. optimization over Y and ∆y have the same max

similar argument for Z gives L(u) = M(u)



Summary

f (y) + g(z) original primal objective
L(u) original dual∑

y αy f (y) +
∑

z βzg(z) LP primal objective

M(u) LP dual

relationship between LP dual, original dual, and LP primal objective

min
u

M(u) = min
u

L(u) =
∑

y

α∗y f (y) +
∑

z

β∗zg(z)



Primal relationship
define:

• Q ⊆ ∆y ×∆z corresponds to feasible solutions of the original
problem

Q = {(δy (y), δz(z)): y ∈ Y, z ∈ Z,
y(i , t) = z(i , t) for all (i , t)}

• Q′ ⊆ ∆y ×∆z is the set of feasible solutions to the LP

Q′ = {(α, β): α ∈ ∆Y , β ∈ ∆Z ,∑
y αyy(i , t) =

∑
z βzz(i , t) for all (i , t)}

• Q ⊆ Q′

solutions:
max
q∈Q

h(q) ≤ max
q∈Q′

h(q) for any h



Concrete example

• Y = {y1, y2, y3}
• Z = {z1, z2, z3}
• ∆y ⊂ R3, ∆z ⊂ R3

Y
x

a

He

a

is

y1

x

b

He

b

is

y2

x

c

He

c

is

y3

Z a

He

b

is

z1

b

He

a

is

z2

c

He

c

is

z3



Simple solution

Y
x

a

He

a

is

y1

x

b

He

b

is

y2

x

c

He

c

is

y3

Z a

He

b

is

z1

b

He

a

is

z2

c

He

c

is

z3

choose:
• α(1) = (0, 0, 1) ∈ ∆y is representation of y3

• β(1) = (0, 0, 1) ∈ ∆z is representation of z3

confirm: ∑

y

α
(1)
y y(i , t) =

∑

z

β
(1)
z z(i , t)

α(1) and β(1) satisfy agreement constraint



Fractional solution

Y
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Z a

He

b
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z1

b

He
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choose:
• α(2) = (0.5, 0.5, 0) ∈ ∆y is combination of y1 and y2

• β(2) = (0.5, 0.5, 0) ∈ ∆z is combination of z1 and z2

confirm: ∑

y

α
(2)
y y(i , t) =

∑

z

β
(2)
z z(i , t)

α(2) and β(2) satisfy agreement constraint, but not integral



Optimal solution

weights:

• the choice of f and g determines the optimal solution

• if (f , g) favors (α(2), β(2)), the optimal solution is fractional

example: f = [1 1 2] and g = [1 1 − 2]

• f · α(1) + g · β(1) = 0 vs f · α(2) + g · β(2) = 2

• α(2), β(2) is optimal, even though it is fractional

summary: dual and LP primal optimal:

min
u

M(u) = min
u

L(u) =
∑

y

α
(2)
y f (y) +

∑

z

β
(2)
z g(z) = 2

original primal optimal:

f (y∗) + g(z∗) = 0
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Tightening (Sherali and Adams, 1994; Sontag et al., 2008)

modify:

• extend Y, Z to identify bigrams of part-of-speech tags

• y(i , t1, t2) = 1 ↔ y(i , t1) = 1 and y(i + 1, t2) = 1

• z(i , t1, t2) = 1 ↔ z(i , t1) = 1 and z(i + 1, t2) = 1

all bigram constraints: valid to add for all i , t1, t2 ∈ T
∑

y

αyy(i , t1, t2) =
∑

z

βzz(i , t1, t2)

however this would make decoding expensive



Iterative tightening
single bigram constraint: cheaper to implement

∑

y

αyy(1, a, b) =
∑

z

βzz(1, a, b)

the solution α(1), β(1) trivially passes this constraint, while
α(2), β(2) violates it
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Dual decomposition with tightening

tightened decomposition includes an additional Lagrange multiplier

yu,v = arg max
y∈Y

f (y) +
∑

i ,t

u(i , t)y(i , t) + v(1, a, b)y(1, a, b)

zu,v = arg max
z∈Z

g(z)−
∑

i ,t

u(i , t)z(i , t)− v(1, a, b)z(1, a, b)

in general, this term can make the decoding problem more difficult

example:

• for small examples, these penalties are easy to compute

• for CFG parsing, need to include extra states that maintain
tag bigrams (still faster than full intersection)
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6. Advanced examples

aim: demonstrate some different relaxation techniques

• higher-order non-projective dependency parsing

• syntactic machine translation



Higher-order non-projective dependency parsing

setup: given a model for higher-order non-projective dependency
parsing (sibling features)

problem: find non-projective dependency parse that maximizes the
score of this model

difficulty:

• model is NP-hard to decode

• complexity of the model comes from enforcing combinatorial
constraints

strategy: design a decomposition that separates combinatorial
constraints from direct implementation of the scoring function



Non-Projective Dependency Parsing

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

Important problem in many languages.

Problem is NP-Hard for all but the simplest models.



Dual Decomposition

A classical technique for constructing decoding algorithms.

Solve complicated models

y∗ = arg max
y

f (y)

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

I Dynamic programming

I Minimum spanning tree

I Shortest path

I Min-Cut

I ...



Non-Projective Dependency Parsing

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

I Starts at the root symbol *

I Each word has a exactly one parent word

I Produces a tree structure (no cycles)

I Dependencies can cross



Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =

score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm
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Sibling Models
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f (y) =
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+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard
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Thought Experiment: Individual Decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

Under Sibling Model, can solve for each word with Viterbi decoding.
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Thought Experiment Continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8
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Idea: Do individual decoding for each head word using dynamic
programming.

If we’re lucky, we’ll end up with a valid final tree.

But we might violate some constraints.
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Dual Decomposition Structure

Goal y∗ = arg max
y∈Y

f (y)
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z∈ Z, y∈ Y
f (z) + g(y)

such that z = y

Valid TreesAll Possible
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Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))
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Algorithm Sketch

Set penalty weights equal to 0 for all edges.

For k = 1 to K

z(k) ← Decode (f (z) + penalty) by Individual Decoding

y (k) ← Decode (g(y)− penalty) by Minimum Spanning Tree

If y (k)(i , j) = z(k)(i , j) for all i , j Return (y (k), z(k))

Else Update penalty weights based on y (k)(i , j)− z(k)(i , j)



Individual Decoding
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(f (z) +
∑

i ,j

u(i , j)z(i , j))

Minimum Spanning Tree
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y∗ = arg max
y∈Y

(g(y)−
∑

i ,j

u(i , j)y(i , j))

Penalties
u(i , j) = 0 for all i ,j

Iteration 1

u(8, 1) -1

u(4, 6) -1

u(2, 6) 1

u(8, 7) 1

Iteration 2

u(8, 1) -1

u(4, 6) -2

u(2, 6) 2

u(8, 7) 1

Converged
y∗ = arg max

y∈Y
f (y) + g(y)

Key
f (z) ⇐ Sibling Model g(y) ⇐ Arc-Factored Model
Z ⇐ No Constraints Y ⇐ Tree Constraints
y(i , j) = 1 if y contains dependency i , j
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Guarantees

Theorem
If at any iteration y (k) = z(k), then (y (k), z(k)) is the global

optimum.

In experiments, we find the global optimum on 98% of examples.

If we do not converge to a match, we can still return an
approximate solution (more in the paper).
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Extensions

I Grandparent Models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) =...+ score(gp =∗0, head = saw2, prev =movie4,mod =today5)

I Head Automata (Eisner, 2000)

Generalization of Sibling models

Allow arbitrary automata as local scoring function.



Experiments
Properties:

I Exactness

I Parsing Speed

I Parsing Accuracy

I Comparison to Individual Decoding

I Comparison to LP/ILP

Training:
I Averaged Perceptron (more details in paper)

Experiments on:

I CoNLL Datasets

I English Penn Treebank

I Czech Dependency Treebank



How often do we exactly solve the problem?
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I Percentage of examples where the dual decomposition finds
an exact solution.



Parsing Speed
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Grandparent model

I Number of sentences parsed per second

I Comparable to dynamic programming for projective parsing



Accuracy

Arc-Factored Prev Best Grandparent

Dan 89.7 91.5 91.8
Dut 82.3 85.6 85.8
Por 90.7 92.1 93.0
Slo 82.4 85.6 86.2
Swe 88.9 90.6 91.4
Tur 75.7 76.4 77.6
Eng 90.1 — 92.5
Cze 84.4 — 87.3

Prev Best - Best reported results for CoNLL-X data set, includes

I Approximate search (McDonald and Pereira, 2006)

I Loop belief propagation (Smith and Eisner, 2008)

I (Integer) Linear Programming (Martins et al., 2009)



Comparison to Subproblems
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Comparison to LP/ILP

Martins et al.(2009): Proposes two representations of
non-projective dependency parsing as a linear programming
relaxation as well as an exact ILP.

I LP (1)
I LP (2)
I ILP

Use an LP/ILP Solver for decoding

We compare:

I Accuracy
I Exactness
I Speed

Both LP and dual decomposition methods use the same model,
features, and weights w .



Comparison to LP/ILP: Accuracy
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I All decoding methods have comparable accuracy



Comparison to LP/ILP: Exactness and Speed
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Syntactic translation decoding

setup: assume a trained model for syntactic machine translation

problem: find best derivation that maximizes the score of this
model

difficulty:

• need to incorporate language model in decoding

• empirically, relaxation is often not tight, so dual
decomposition does not always converge

strategy:

• use a different relaxation to handle language model

• incrementally add constraints to find exact solution



Syntactic Translation
Problem:

Decoding synchronous grammar for machine translation

Example:

<s> abarks le dug </s>

<s> the dog barks loudly </s>

Goal:
y∗ = arg max

y
f (y)

where y is a parse derivation in a synchronous grammar



Hiero Example

Consider the input sentence

<s> abarks le dug </s>

And the synchronous grammar

S → <s> X </s>, <s> X </s>

X → abarks X, X barks loudly
X → abarks X, barks X
X → abarks X, barks X loudly
X → le dug, the dog
X → le dug, a cat



Hiero Example
Apply synchronous rules to map this sentence

S

<s> X

abarks X

le dug

</s>

S

<s> X

X

the dog

barks loudly

</s>

Many possible mappings:

<s> the dog barks loudly </s>

<s> a cat barks loudly </s>

<s> barks the dog </s>

<s> barks a cat </s>
<s> barks the dog loudly </s>

<s> barks a cat loudly </s>



Translation Forest
Rule Score

1 → <s> 4 </s> -1
4 → 5 barks loudly 2
4 → barks 5 0.5
4 → barks 5 loudly 3
5 → the dog -4
5 → a cat 2.5

Example: a derivation in the translation forest

1

<s> 4

5

a cat

barks loudly

</s>



Scoring function
Score : sum of hypergraph derivation and language model

1

<s> 4

5

a cat

barks loudly

</s>

f (y) = score(5→ a cat)



Scoring function
Score : sum of hypergraph derivation and language model

1

<s> 4

5

a cat

barks loudly

</s>

f (y) = score(5→ a cat) + score(4→ 5 barks loudly)



Scoring function
Score : sum of hypergraph derivation and language model

1

<s> 4

5

a cat

barks loudly

</s>

f (y) = score(5→ a cat) + score(4→ 5 barks loudly) + . . .

+score(<s>, the)



Scoring function
Score : sum of hypergraph derivation and language model

1

<s> 4

5

a cat

barks loudly

</s>

f (y) = score(5→ a cat) + score(4→ 5 barks loudly) + . . .

+score(<s>, a) + score(a, cat)



Exact Dynamic Programming
To maximize combined model, need to ensure that bigrams are
consistent with parse tree.
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Exact Dynamic Programming
To maximize combined model, need to ensure that bigrams are
consistent with parse tree.

1

<s> 4

5

a cat

barks loudly

</s>

<s> a

loudly

barkscat<s> cat

<s> loudly

<s> </s>

Original Rules

5 → the dog
5 → a cat

New Rules

<s>5cat → <s>thethe thedogdog
barks5cat → barksthethe thedogdog
<s>5cat → <s>aa acatcat
barks5cat → barksaa acatcat



Lagrangian Relaxation Algorithm for
Syntactic Translation

Outline:

• Algorithm for simplified version of translation

• Full algorithm with certificate of exactness

• Experimental results
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Thought experiment: Greedy language model
Choose best bigram for a given word

barks

<s>

dog

cat

• score(<s>, barks)

• score(dog, barks)

• score(cat, barks)

Can compute with a simple maximization

arg max
w :〈w ,barks〉∈B

score(w , barks)



Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

</s> barks loudly the dog a cat

barks
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</s> barks loudly the dog a cat

barks dog
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Step 1. Greedily choose best bigram for each word
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barks dog barks
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Thought experiment: Full decoding
Step 1. Greedily choose best bigram for each word

</s> barks loudly the dog a cat

barks dog barks <s> the <s> a

Step 2. Find the best derivation with fixed bigrams

1

<s> 4

5

a cat

barks loudly

</s>

<s> a

dog barks

barks



Thought Experiment Problem

May produce invalid parse and bigram relationship
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Greedy bigram selection may conflict with the parse derivation



Thought Experiment Problem

May produce invalid parse and bigram relationship

1

<s> 4

5

a cat

barks loudly

</s>

<s> a

dog barks

barks

Greedy bigram selection may conflict with the parse derivation



Formal objective
Notation: y(w , v) = 1 if the bigram 〈w , v〉 ∈ B is in y

Goal:
arg max

y∈Y
f (y)

such that for all words nodes yv
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Formal objective
Notation: y(w , v) = 1 if the bigram 〈w , v〉 ∈ B is in y

Goal:
arg max

y∈Y
f (y)

such that for all words nodes yv

yv =
∑

w :〈w ,v〉∈B
y(w , v) (1)

yv =
∑

w :〈v ,w〉∈B
y(v ,w) (2)

Lagrangian: Relax constraint (2), leave constraint (1)

L(u, y) = max
y∈Y

f (y) +
∑

w ,v

u(v)


yv −

∑

w :〈v ,w〉∈B
y(v ,w)




For a given u, L(u, y) can be solved by our greedy LM algorithm

v

vw

wv



Algorithm
Set u(1)(v) = 0 for all v ∈ VL

For k = 1 to K

y (k) ← arg max
y∈Y

L(k)(u, y)

If y
(k)
v =

∑

w :〈v ,w〉∈B
y (k)(v ,w) for all v Return (y (k))

Else

u(k+1)(v)← u(k)(v)− αk


y

(k)
v −

∑

w :〈v ,w〉∈B
y (k)(v ,w)






Thought experiment: Greedy with penalties
Choose best bigram with penalty for a given word

barks

<s>

dog

cat

• score(<s>, barks)− u(<s>) + u(barks)



Thought experiment: Greedy with penalties
Choose best bigram with penalty for a given word

barks

<s>

dog

cat

• score(<s>, barks)− u(<s>) + u(barks)

• score(cat, barks)− u(cat) + u(barks)



Thought experiment: Greedy with penalties
Choose best bigram with penalty for a given word

barks

<s>

dog

cat

• score(<s>, barks)− u(<s>) + u(barks)

• score(cat, barks)− u(cat) + u(barks)

• score(dog, barks)− u(dog) + u(barks)



Thought experiment: Greedy with penalties
Choose best bigram with penalty for a given word

barks

<s>

dog

cat

• score(<s>, barks)− u(<s>) + u(barks)

• score(cat, barks)− u(cat) + u(barks)

• score(dog, barks)− u(dog) + u(barks)

Can still compute with a simple maximization over

arg max
w :〈w ,barks〉∈B

score(w , barks)− u(w) + u(barks)
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Algorithm example
Penalties
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Greedy decoding
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Algorithm example
Penalties

v </s> barks loudly the dog a cat
u(v) 0 -1 1 0 -0.5 0 0.5

Greedy decoding

</s> barks loudly the dog a cat

loudly dog barks <s> the <s> a

1

<s> 4

5

the dog

barks loudly

</s>

<s> the

dog barks

loudly



Constraint Issue
Constraints do not capture all possible reorderings

Example: Add rule 〈5→ cat a〉 to forest. New derivation
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Satisfies both constraints (1) and (2), but is not self-consistent.
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New Constraints: Paths
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Fix: In addition to
bigrams, consider paths
between terminal nodes

Example: Path marker
〈5 ↓, 10 ↓〉 implies that
between two word nodes,
we move down from node
5 to node 10
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Greedy Language Model with Paths
Step 1. Greedily choose best path each word

</s> barks loudly the dog a cat

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

</s> barks loudly the dog a cat

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

< barks ↓>

< 5 ↑,barks ↓>

< cat ↑, 5 ↑>

< cat ↑>

</s> barks loudly the dog a cat

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

< barks ↓>

< 5 ↑,barks ↓>

< cat ↑, 5 ↑>

< cat ↑>

< loudly ↓>

< loudly ↓, barks ↑>

< barks ↑>

</s> barks loudly the dog a cat

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

< barks ↓>

< 5 ↑,barks ↓>

< cat ↑, 5 ↑>

< cat ↑>

< loudly ↓>

< loudly ↓, barks ↑>

< barks ↑>

< the ↓>

< 5 ↓, the ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

</s> barks loudly the dog a cat

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

< barks ↓>

< 5 ↑,barks ↓>

< cat ↑, 5 ↑>

< cat ↑>

< loudly ↓>

< loudly ↓, barks ↑>

< barks ↑>

< the ↓>

< 5 ↓, the ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

< dog ↓>

< the ↑,dog ↓>

< the ↑>

</s> barks loudly the dog a cat

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

< barks ↓>

< 5 ↑,barks ↓>

< cat ↑, 5 ↑>

< cat ↑>

< loudly ↓>

< loudly ↓, barks ↑>

< barks ↑>

< the ↓>

< 5 ↓, the ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

< dog ↓>

< the ↑,dog ↓>

< the ↑>

< a ↓>

< 5 ↓, a ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

</s> barks loudly the dog a cat

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

< barks ↓>

< 5 ↑,barks ↓>

< cat ↑, 5 ↑>

< cat ↑>

< loudly ↓>

< loudly ↓, barks ↑>

< barks ↑>

< the ↓>

< 5 ↓, the ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

< dog ↓>

< the ↑,dog ↓>

< the ↑>

< a ↓>

< 5 ↓, a ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

< cat ↓>

< a ↑, cat ↓>

< a ↑>



Greedy Language Model with Paths
Step 1. Greedily choose best path each word
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Greedy Language Model with Paths
Step 1. Greedily choose best path each word
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< loudly ↓, barks ↑>

< barks ↑>

< the ↓>

< 5 ↓, the ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

</s> barks loudly the dog a cat

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

< barks ↓>

< 5 ↑,barks ↓>

< cat ↑, 5 ↑>

< cat ↑>

< loudly ↓>

< loudly ↓, barks ↑>

< barks ↑>

< the ↓>

< 5 ↓, the ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

< dog ↓>

< the ↑,dog ↓>

< the ↑>

</s> barks loudly the dog a cat

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

< barks ↓>

< 5 ↑,barks ↓>

< cat ↑, 5 ↑>

< cat ↑>

< loudly ↓>

< loudly ↓, barks ↑>

< barks ↑>

< the ↓>

< 5 ↓, the ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

< dog ↓>

< the ↑,dog ↓>

< the ↑>

< a ↓>

< 5 ↓, a ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

</s> barks loudly the dog a cat

< </s> ↓>
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Greedy Language Model with Paths
Step 1. Greedily choose best path each word
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Greedy Language Model with Paths
Step 1. Greedily choose best path each word
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Greedy Language Model with Paths
Step 1. Greedily choose best path each word
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Greedy Language Model with Paths
Step 1. Greedily choose best path each word
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< </s> ↓>

< 4 ↑, </s> ↓>
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Greedy Language Model with Paths (continued)

Step 2. Find the best derivation over these elements

1

<s> 4

5

a cat

barks loudly

</s>

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

< barks ↓>

< 5 ↑,barks ↓>

< cat ↑, 5 ↑>

< cat ↑>

< loudly ↓>

< loudly ↓, barks ↑>

< barks ↑>

< a ↓>

< 5 ↓, a ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

< cat ↓>

< a ↑, cat ↓>

< a ↑>



Greedy Language Model with Paths (continued)

Step 2. Find the best derivation over these elements

1

<s> 4

5

a cat

barks loudly

</s>

< </s> ↓>

< 4 ↑, </s> ↓>

< loudly ↑, 4 ↓>

< loudly ↑>

< barks ↓>

< 5 ↑, barks ↓>

< cat ↑, 5 ↑>

< cat ↑>

< loudly ↓>

< loudly ↓, barks ↑>

< barks ↑>

< a ↓>

< 5 ↓, a ↓>

< 4 ↓, 5 ↓>

< <s> ↑, 4 ↓>

< <s> ↑>

< cat ↓>

< a ↑, cat ↓>

< a ↑>



Efficiently Calculating Best Paths
There are too many paths to compute argmax directly, but we can
compactly represent all paths as a graph

< 3 ↑, 1 ↑>

< 5 ↓, 10 ↓>

< 5 ↑, 6 ↓>

< 4 ↑, 3 ↓>

< 11 ↓>

< 3 ↓>

< 5 ↓, 8 ↓>

< 2 ↑> < 10 ↑>< 8 ↑>

< 8 ↓>

< 9 ↑, 5 ↑>

< 6 ↑, 5 ↓>

< 6 ↑>

< 6 ↑, 7 ↓>

< 10 ↑, 11 ↓>< 7 ↑>

< 4 ↓, 5 ↓>

< 11 ↑>< 9 ↑>

< 11 ↑, 5 ↑>< 2 ↑, 4 ↓>

< 4 ↓, 6 ↓> < 5 ↑, 4 ↑>

< 10 ↓>

< 6 ↓>

< 7 ↑, 4 ↑>

< 7 ↓>

< 5 ↑, 7 ↓>

< 3 ↑>

< 9 ↓>

< 8 ↑, 9 ↓>

Graph is linear in the size of the grammar

• Green nodes represent leaving a word

• Red nodes represent entering a word

• Black nodes are intermediate paths



Best Paths

< 3 ↑, 1 ↑>

< 5 ↓, 10 ↓>

< 5 ↑, 6 ↓>

< 4 ↑, 3 ↓>

< 11 ↓>

< 3 ↓>

< 5 ↓, 8 ↓>

< 2 ↑> < 10 ↑>< 8 ↑>

< 8 ↓>

< 9 ↑, 5 ↑>

< 6 ↑, 5 ↓>

< 6 ↑>

< 6 ↑, 7 ↓>

< 10 ↑, 11 ↓>< 7 ↑>

< 4 ↓, 5 ↓>

< 11 ↑>< 9 ↑>

< 11 ↑, 5 ↑>< 2 ↑, 4 ↓>

< 4 ↓, 6 ↓> < 5 ↑, 4 ↑>

< 10 ↓>

< 6 ↓>

< 7 ↑, 4 ↑>

< 7 ↓>

< 5 ↑, 7 ↓>

< 3 ↑>

< 9 ↓>

< 8 ↑, 9 ↓>
Goal: Find the best
path between all
word nodes (green
and red)

Method: Run
all-pairs shortest
path to find best
paths



Full Algorithm

Algorithm is very similar to simple bigram case. Penalty weights are
associated with nodes in the graph instead of just bigram words

Theorem
If at any iteration the greedy paths agree with the derivation,

then (y (k)) is the global optimum.

But what if it does not find the global optimum?



Convergence
The algorithm is not guaranteed to converge

May get stuck between solutions.
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Can fix this by incrementally adding constraints to the problem



Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.

• Initially place all words in the same partition.

• If the algorithm gets stuck, separate words that conflict

• Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

1

<s> 4

5

a cat

barks loudly

</s>

<s> a

dog barks

loudly

Partitions

A = {2,6,7,8,9,10,11}
B = {}



Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.

• Initially place all words in the same partition.

• If the algorithm gets stuck, separate words that conflict

• Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

1

<s> 4

5

a cat

barks loudly

</s>

<s> a

dog barks

loudly

Partitions

A = {2,6,7,8,9,10,11}
B = {}



Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.

• Initially place all words in the same partition.

• If the algorithm gets stuck, separate words that conflict

• Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

1

<s> 4

5

a cat

barks loudly

</s>

<s> a

dog barks

loudly

Partitions

A = {2,6,7,8,9,10,11}
B = {}



Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.

• Initially place all words in the same partition.

• If the algorithm gets stuck, separate words that conflict

• Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

1

<s> 4

5

the dog

barks loudly

</s>

<s> the

cat barks

loudly

Partitions

A = {2,6,7,8,9,10,11}
B = {}



Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.

• Initially place all words in the same partition.

• If the algorithm gets stuck, separate words that conflict

• Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

1

<s> 4

5

the dog

barks loudly

</s>

<s> the

cat barks

loudly

Partitions

A = {2,6,7,8,9,10}
B = {11}



Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.

• Initially place all words in the same partition.

• If the algorithm gets stuck, separate words that conflict

• Run the exact algorithm but only distinguish between
partitions (much faster than running full exact algorithm)

Example:

1

<s> 4

5

the dog

barks loudly

</s>

<s> the

cat barks

loudly

Partitions

A = {2,6,7,8,9,10}
B = {11}



Tightening
Main idea: Keep partition sets (A and B). The parser treats all
words in a partition as the same word.

• Initially place all words in the same partition.
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Experiments

Properties:

• Exactness

• Translation Speed

• Comparison to Cube Pruning

Model:

• Tree-to-String translation model (Huang and Mi, 2010)

• Trained with MERT

Experiments:

• NIST MT Evaluation Set (2008)
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Comparison to Cube Pruning: Exactness
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The Phrase-Based Decoding Problem
I We have a source-language sentence x1, x2, . . . , xN

(xi is the i’th word in the sentence)

I A phrase p is a tuple (s, t, e) signifying that words xs . . . xt
have a target-language translation as e

I E.g., p = (2, 5, the dog) specifies that words x2 . . . x5 have a
translation as the dog

I Output from a phrase-based model is a derivation

y = p1p2 . . . pL

where pj for j = 1 . . . L are phrases. A derivation defines a
translation e(y) formed by concatenating the strings

e(p1)e(p2) . . . e(pL)



Scoring Derivations

I Each phrase p has a score g(p).

I For two consecutive phrases pk = (s, t, e) and
pk+1 = (s′, t′, e′), the distortion distance is
δ(t, s′) = |t+ 1− s′|

I The score for a derivation is

f(y) = h(e(y)) +
L∑

k=1

g(pk) +
L−1∑

k=1

η × δ(t(pk), s(pk+1))

where η ∈ R is the distortion penalty, and h(e(y)) is the
language model score



The Decoding Problem

I Y is the set of all valid derivations

I For a derivation y, y(i) is the number of times word i is
translated

I A derivation y = p1, p2, . . . , pL is valid if:

I y(i) = 1 for i = 1 . . . N
I For each pair of consecutive phrases pk, pk+1 for
k = 1 . . . L− 1, we have δ(t(pk), s(pk+1)) ≤ d, where d is the
distortion limit.

I Decoding problem is to find

argmax
y∈Y

f(y)



Exact Dynamic Programming
I We can find

argmax
y∈Y

f(y)

using dynamic programming

I But, the runtime (and number of states) is exponential in N .

I Dynamic programming states are of the form

(w1, w2, b, r)

where

I w1, w2 are last two words of a hypothesis
I b is a bit-string of length N , recording which words have been

translated (2N possibilities)
I r is the end-point of the last phrase in the hypothesis



A Lagrangian Relaxation Algorithm

I Define Y ′ to be the set of derivations such that:

I
∑N

i=1 y(i) = N
I For each pair of consecutive phrases pk, pk+1 for
k = 1 . . . L− 1, we have δ(t(pk), s(pk+1)) ≤ d, where d is the
distortion limit.

I Notes:

I We have dropped the y(i) = 1 constraints.
I We have Y ⊂ Y ′



Dynamic Programming over Y ′

I We can find
argmax

y∈Y ′
f(y)

efficiently, using dynamic programming

I Dynamic programming states are of the form

(w1, w2, n, r)

where

I w1, w2 are last two words of a hypothesis
I n is the length of the partial hypothesis
I r is the end-point of the last phrase in the hypothesis



A Lagrangian Relaxation Algorithm (continued)

I The original decoding problem is

argmax
y∈Y

f(y)

I We can rewrite this as

argmax
y∈Y ′

f(y) such that ∀i, y(i) = 1

I We deal with the y(i) = 1 constraints using Lagrangian
relaxation



A Lagrangian Relaxation Algorithm (continued)

The Lagrangian is

L(u, y) = f(y) +
∑

i

u(i)(y(i)− 1)

The dual objective is then

L(u) = max
y∈Y ′

L(u, y).

and the dual problem is to solve

min
u
L(u).



The Algorithm

Initialization: u0(i)← 0 for i = 1 . . . N

for t = 1 . . . T

yt = argmaxy∈Y ′ L(ut−1, y)

if yt(i) = 1 for i = 1 . . . N

return yt

else

for i = 1 . . . N

ut(i) = ut−1(i)− αt
(
yt(i)− 1

)

Figure: The decoding algorithm. αt > 0 is the step size at the t’th
iteration.



An Example Run of the Algorithm

Input German: dadurch können die qualität und die regelmäßige postzustellung auch weiterhin sichergestellt werden .

t L(ut−1) yt(i) derivation yt

1 -10.0988 0 0 2 2 3 3 0 0 2 0 0 0 1
˛̨̨̨

3, 6
the quality and

˛̨̨̨
9, 9
also

˛̨̨̨
6, 6
the

˛̨̨̨
5, 5
and

˛̨̨̨
3, 3
the

˛̨̨̨
4, 6

quality and

˛̨̨̨
9, 9
also

˛̨̨̨
13, 13

.

˛̨̨̨
2 -11.1597 0 0 1 0 0 0 1 0 0 4 1 5 1

˛̨̨̨
3, 3
the

˛̨̨̨
7, 7

regular

˛̨̨̨
12, 12

will

˛̨̨̨
10, 10

continue to

˛̨̨̨
12, 12

be

˛̨̨̨
10, 10

continue to

˛̨̨̨
12, 12

be

˛̨̨̨
10, 10

continue to

˛̨̨̨
12, 12

be

˛̨̨̨
10, 10

continue to

˛̨̨̨
11, 13

be guaranteed .

˛̨̨̨
3 -12.3742 3 3 1 2 2 0 0 0 1 0 0 0 1

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
5, 5
and

˛̨̨̨
2, 2
can

˛̨̨̨
1, 1
thus

˛̨̨̨
4, 4

quality

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
3, 5

the quality and

˛̨̨̨
9, 9
also

˛̨̨̨
13, 13

.

˛̨̨̨
4 -11.8623 0 1 0 0 0 1 1 3 3 0 3 0 1

˛̨̨̨
2, 2
can

˛̨̨̨
6, 7

the regular

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 9
also

˛̨̨̨
11, 11
ensure

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 9
also

˛̨̨̨
11, 11
ensure

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 9
also

˛̨̨̨
11, 11
ensure

˛̨̨̨
13, 13

.

˛̨̨̨
5 -13.9916 0 0 1 1 3 2 4 0 0 0 1 0 1

˛̨̨̨
3, 3
the

˛̨̨̨
7, 7

regular

˛̨̨̨
5, 5
and

˛̨̨̨
7, 7

regular

˛̨̨̨
5, 5
and

˛̨̨̨
7, 7

regular

˛̨̨̨
6, 6
the

˛̨̨̨
4, 4

quality

˛̨̨̨
5, 7

and the regular

˛̨̨̨
11, 11

ensured

˛̨̨̨
13, 13

.

˛̨̨̨
6 -15.6558 1 1 1 2 0 2 0 1 1 1 1 1 1

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
3, 4

the quality of

˛̨̨̨
6, 6
the

˛̨̨̨
4, 4

quality of

˛̨̨̨
6, 6
the

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 10

continue to

˛̨̨̨
11, 13

be guaranteed .

˛̨̨̨
7 -16.1022 1 1 1 1 1 1 1 1 1 1 1 1 1

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
3, 4

the quality

˛̨̨̨
5, 7

and the regular

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 10

continue to

˛̨̨̨
11, 13

be guaranteed .

˛̨̨̨

Figure 2: An example run of the algorithm in Figure 1. For each value of t we show the dual value L(ut−1), the
derivation yt, and the number of times each word is translated, yt(i) for i = 1 . . . N . For each phrase in a derivation
we show the English string e, together with the span (s, t): for example, the first phrase in the first derivation has
English string the quality and, and span (3, 6). At iteration 7 we have yt(i) = 1 for i = 1 . . . N , and the translation is
returned, with a guarantee that it is optimal.

The dual objective is then

L(u) = max
y∈Y ′

L(u, y).

and the dual problem is to solve

min
u

L(u).

The next section gives a number of formal results de-
scribing how solving the dual problem will be useful
in solving the original optimization problem.

We now describe an algorithm that solves the dual
problem. By standard results for Lagrangian re-
laxation (Korte and Vygen, 2008), L(u) is a con-
vex function; it can be minimized by a subgradient
method. If we define

yu = argmax
y∈Y ′

L(u, y)

and γu(i) = yu(i) − 1 for i = 1 . . . N , then γu is
a subgradient of L(u) at u. A subgradient method
is an iterative method for minimizing L(u), which
perfoms updates ut ← ut−1−αtγut−1 where αt > 0
is the step size for the t’th subgradient step.

Figure 1 depicts the resulting algorithm. At each
iteration, we solve

argmax
y∈Y ′

(
f(y) +

∑

i

u(i)(y(i)− 1)

)

=argmax
y∈Y ′

(
f(y) +

∑

i

u(i)y(i)

)

by the dynamic program described in the previous
section. Incorporating the

∑
i u(i)y(i) terms in the

dynamic program is straightforward: we simply re-
define the phrase scores as

g′(s, t, e) = g(s, t, e) +
t∑

i=s

u(i)

Intuitively, each Lagrange multiplier u(i) penal-
izes or rewards phrases that translate word i; the al-
gorithm attempts to adjust the Lagrange multipliers
in such a way that each word is translated exactly
once. The updates ut(i) = ut−1(i) − αt(yt(i) − 1)
will decrease the value for u(i) if yt(i) > 1, in-
crease the value for u(i) if yt(i) = 0, and leave u(i)
unchanged if yt(i) = 1.

4.3 Properties
We now give some theorems stating formal prop-
erties of the Lagrangian relaxation algorithm. The
proofs are simple, and are given in the supplemental
material for this submission. First, define y∗ to be
the optimal solution for our original problem:

Definition 1. y∗ = argmaxy∈Y f(y)

Our first theorem states that the dual function pro-
vides an upper bound on the score for the optimal
translation, f(y∗):

Theorem 1. For any value of u ∈ RN , L(u) ≥
f(y∗).

The second theorem states that under an appropri-
ate choice of the step sizes αt, the method converges



Tightening the Relaxation
I In some cases, the relaxation is not tight, and the algorithm

will not converge to y(i) = 1 for i = 1 . . . N
I Our solution: incrementally add hard constraints until the

relaxation is tight
I Definition: for any set C ⊆ {1, 2, . . . , N},

Y ′C = {y : y ∈ Y ′, and ∀i ∈ C, y(i) = 1}

I We can find
argmax

y∈Y ′
C
f(y)

using dynamic programming, with a 2|C| increase in the
number of states

I Goal: find a small set C such that Lagrangian relaxation with
Y ′C returns an exact solution



An Example Run of the Algorithm

Input German: es bleibt jedoch dabei , dass kolumbien ein land ist , das aufmerksam beobachtet werden muss .

t L(ut−1) yt(i) derivation yt

1 -11.8658 0 0 0 0 1 3 0 3 3 4 1 1 0 0 0 0 1
˛̨̨̨
5, 6
that

˛̨̨̨
10, 10

is

˛̨̨̨
8, 9

a country

˛̨̨̨
6, 6
that

˛̨̨̨
10, 10

is

˛̨̨̨
8, 9

a country

˛̨̨̨
6, 6
that

˛̨̨̨
10, 10

is

˛̨̨̨
8, 8

a

˛̨̨̨
9, 12

country that

˛̨̨̨
17, 17

.

˛̨̨̨
2 -5.46647 2 2 4 0 2 0 1 0 0 0 1 0 1 1 1 1 1

˛̨̨̨
3, 3

however ,

˛̨̨̨
1, 1

it

˛̨̨̨
2, 3

is , however

˛̨̨̨
5, 5

,

˛̨̨̨
3, 3

however ,

˛̨̨̨
1, 1

it

˛̨̨̨
2, 3

is , however

˛̨̨̨
5, 5

,

˛̨̨̨
7, 7

colombia

˛̨̨̨
11, 11

,

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
.
.
.

32 -17.0203 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1
˛̨̨̨

1, 5
nonetheless ,

˛̨̨̨
7, 7

colombia

˛̨̨̨
10, 10

is

˛̨̨̨
8, 8

a

˛̨̨̨
9, 12

country that

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
33 -17.1727 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
6, 6
that

˛̨̨̨
8, 9

a country

˛̨̨̨
6, 6
that

˛̨̨̨
7, 7

colombia

˛̨̨̨
11, 12
, which

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
34 -17.0203 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
7, 7

colombia

˛̨̨̨
10, 10

is

˛̨̨̨
8, 8

a

˛̨̨̨
9, 12

country that

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
35 -17.1631 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1

˛̨̨̨
1, 5
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Figure 1: An example run of the algorithm in Figure 3. At iteration 32, we start the K = 10 iterations to count
which constraints are violated most often. After K iterations, the count for 6 and 10 is 10, and all other constraints
have not been violated during the K iterations. Thus, hard constraints for word 6 and 10 are added. After adding the
constraints, we have yt(i) = 1 for i = 1 . . . N , and the translation is returned, with a guarantee that it is optimal.

β∅(s′, u) is much cheaper than calculating βC(s, u)
directly. Guided by β∅(s′, u), βC(s, u) can be calcu-
lated efficiently by using A* search.

Using the A* algorithm leads to significant
improvements in efficiency when constraints are
added. Section 6 presents comparison of the running
time with and without A* algorithm.

D Step Size

Similar to ?), we set the step size at the tth iteration
to be αt = 1/(1 + λt), where λt is the number of
times that L(u(t

′
) > L(u(t

′−1)) for all t′ ≤ t.



The Algorithm with Constraint Generation

Optimize(C, u)
while (dual value still improving)

y∗ = argmaxy∈Y′
C
L(u, y)

if y∗(i) = 1 for i = 1 . . . N return y∗

else for i = 1 . . . N

u(i) = u(i)− α (y∗(i)− 1)

count(i) = 0 for i = 1 . . . N

for k = 1 . . .K

y∗ = argmaxy∈Y′
C
L(u, y)

if y∗(i) = 1 for i = 1 . . . N return y∗

else for i = 1 . . . N

u(i) = u(i)− α (y∗(i)− 1)

count(i) = count(i) + [[y∗(i) 6= 1]]

Let C′ = set of G i’s that have the largest value for
count(i) and that are not in C
return Optimize(C ∪ C′, u)



Number of Constraints Required

# cons. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-0 183 (98.9 %) 511 (91.6 %) 438 (77.4 %) 222 (64.0 %) 82 ( 48.8 %) 1,436 (78.7 %) 78.7 %
1-3 2 ( 1.1 %) 45 ( 8.1 %) 94 (16.6 %) 87 (25.1 %) 50 ( 29.8 %) 278 (15.2 %) 94.0 %
4-6 0 ( 0.0 %) 2 ( 0.4 %) 27 ( 4.8 %) 24 ( 6.9 %) 19 ( 11.3 %) 72 ( 3.9 %) 97.9 %
7-9 0 ( 0.0 %) 0 ( 0.0 %) 7 ( 1.2 %) 13 ( 3.7 %) 12 ( 7.1 %) 32 ( 1.8 %) 99.7 %
x 0 ( 0.0 %) 0 ( 0.0 %) 0 ( 0.0 %) 1 ( 0.3 %) 5 ( 3.0 %) 6 ( 0.3 %) 100.0 %

Table 2: Table showing the number of constraints added before convergence of the algorithm in Figure 3, broken down by sentence
length. Note that a maximum of 3 constraints are added at each recursive call, but that fewer than 3 constraints are added in cases
where fewer than 3 constraints have count(i) > 0. x indicates the sentences that fail to converge after 250 iterations. 78.7% of the
examples converge without adding any constraints.

# cons.
1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
A* w/o A* w/o A* w/o A* w/o A* w/o A* w/o

0-0 0.8 0.8 9.7 10.7 47.0 53.7 153.6 178.6 402.6 492.4 64.6 76.1
1-3 2.4 2.9 23.2 28.0 80.9 102.3 277.4 360.8 686.0 877.7 241.3 309.7
4-6 0.0 0.0 28.2 38.8 111.7 163.7 309.5 575.2 1,552.8 1,709.2 555.6 699.5
7-9 0.0 0.0 0.0 0.0 166.1 500.4 361.0 1,467.6 1,167.2 3,222.4 620.7 1,914.1
mean 0.8 0.9 10.9 12.3 57.2 72.6 203.4 299.2 679.9 953.4 120.9 168.9
median 0.7 0.7 8.9 9.9 48.3 54.6 169.7 202.6 484.0 606.5 35.2 40.0

Table 3: The average time (in seconds) for decoding using the algorithm in Figure 3, with and without A* algorithm, broken down
by sentence length and the number of constraints that are added. A* indicates speeding up using A* search; w/o denotes without
using A*.

a general purpose integer linear programming (ILP)
solver, which solves the problem exactly.

The experiments focus on translation from Ger-
man to English, using the Europarl data (Koehn,
2005). We tested on 1,824 sentences of length at
most 50 words. The experiments use the algorithm
shown in Figure 3. We limit the algorithm to a max-
imum of 250 iterations and a maximum of 9 hard
constraints. The distortion limit d is set to be four,
and we prune the phrase translation table to have 10
English phrases per German phrase.

Our method finds exact solutions on 1,818 out
of 1,824 sentences (99.67%). (6 examples do not
converge within 250 iterations.) Table 1 shows the
number of iterations required for convergence, and
Table 2 shows the number of constraints required
for convergence, broken down by sentence length.
In 1,436/1,818 (78.7%) sentences, the method con-
verges without adding hard constraints to tighten the
relaxation. For sentences with 1-10 words, the vast
majority (183 out of 185 examples) converge with
0 constraints added. As sentences get longer, more
constraints are often required. However most exam-
ples converge with 9 or fewer constraints.

Table 3 shows the average times for decoding,
broken down by sentence length, and by the number
of constraints that are added. As expected, decod-

ing times increase as the length of sentences, and
the number of constraints required, increase. The
average run time across all sentences is 120.9 sec-
onds. Table 3 also shows the run time of the method
without the A* algorithm for decoding. The A* al-
gorithm gives significant reductions in runtime.

6.1 Comparison to an LP/ILP solver
To compare to a linear programming (LP) or inte-
ger linear programming (ILP) solver, we can im-
plement the dynamic programming part of our al-
gorithm (search over the set Y ′) through linear con-
straints, with a linear objective. The y(i) = 1 con-
straints are also linear. Hence we can encode our
relaxation within an LP or ILP. Having done this,
we tested the resulting LP or ILP using Gurobi, a
high-performance commercial grade solver. We also
compare to an LP or ILP where the dynamic pro-
gram makes use of states (w1, w2, n, r)—i.e., the
span (l,m) is dropped, making the dynamic pro-
gram smaller. Table 4 includes results of the time re-
quired to find a solution on sentences of length 1-15.
Both the LP and the ILP require very long running
times on these shorter sentences, and running times
on longer sentences are prohibitive. Our algorithm
is more efficient because it leverages the structure of
the problem, by directly using a combinatorial algo-
rithm (dynamic programming).



Time Required

# cons. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-0 183 (98.9 %) 511 (91.6 %) 438 (77.4 %) 222 (64.0 %) 82 ( 48.8 %) 1,436 (78.7 %) 78.7 %
1-3 2 ( 1.1 %) 45 ( 8.1 %) 94 (16.6 %) 87 (25.1 %) 50 ( 29.8 %) 278 (15.2 %) 94.0 %
4-6 0 ( 0.0 %) 2 ( 0.4 %) 27 ( 4.8 %) 24 ( 6.9 %) 19 ( 11.3 %) 72 ( 3.9 %) 97.9 %
7-9 0 ( 0.0 %) 0 ( 0.0 %) 7 ( 1.2 %) 13 ( 3.7 %) 12 ( 7.1 %) 32 ( 1.8 %) 99.7 %
x 0 ( 0.0 %) 0 ( 0.0 %) 0 ( 0.0 %) 1 ( 0.3 %) 5 ( 3.0 %) 6 ( 0.3 %) 100.0 %

Table 2: Table showing the number of constraints added before convergence of the algorithm in Figure 3, broken down by sentence
length. Note that a maximum of 3 constraints are added at each recursive call, but that fewer than 3 constraints are added in cases
where fewer than 3 constraints have count(i) > 0. x indicates the sentences that fail to converge after 250 iterations. 78.7% of the
examples converge without adding any constraints.

# cons.
1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
A* w/o A* w/o A* w/o A* w/o A* w/o A* w/o

0-0 0.8 0.8 9.7 10.7 47.0 53.7 153.6 178.6 402.6 492.4 64.6 76.1
1-3 2.4 2.9 23.2 28.0 80.9 102.3 277.4 360.8 686.0 877.7 241.3 309.7
4-6 0.0 0.0 28.2 38.8 111.7 163.7 309.5 575.2 1,552.8 1,709.2 555.6 699.5
7-9 0.0 0.0 0.0 0.0 166.1 500.4 361.0 1,467.6 1,167.2 3,222.4 620.7 1,914.1
mean 0.8 0.9 10.9 12.3 57.2 72.6 203.4 299.2 679.9 953.4 120.9 168.9
median 0.7 0.7 8.9 9.9 48.3 54.6 169.7 202.6 484.0 606.5 35.2 40.0

Table 3: The average time (in seconds) for decoding using the algorithm in Figure 3, with and without A* algorithm, broken down
by sentence length and the number of constraints that are added. A* indicates speeding up using A* search; w/o denotes without
using A*.

a general purpose integer linear programming (ILP)
solver, which solves the problem exactly.

The experiments focus on translation from Ger-
man to English, using the Europarl data (Koehn,
2005). We tested on 1,824 sentences of length at
most 50 words. The experiments use the algorithm
shown in Figure 3. We limit the algorithm to a max-
imum of 250 iterations and a maximum of 9 hard
constraints. The distortion limit d is set to be four,
and we prune the phrase translation table to have 10
English phrases per German phrase.

Our method finds exact solutions on 1,818 out
of 1,824 sentences (99.67%). (6 examples do not
converge within 250 iterations.) Table 1 shows the
number of iterations required for convergence, and
Table 2 shows the number of constraints required
for convergence, broken down by sentence length.
In 1,436/1,818 (78.7%) sentences, the method con-
verges without adding hard constraints to tighten the
relaxation. For sentences with 1-10 words, the vast
majority (183 out of 185 examples) converge with
0 constraints added. As sentences get longer, more
constraints are often required. However most exam-
ples converge with 9 or fewer constraints.

Table 3 shows the average times for decoding,
broken down by sentence length, and by the number
of constraints that are added. As expected, decod-

ing times increase as the length of sentences, and
the number of constraints required, increase. The
average run time across all sentences is 120.9 sec-
onds. Table 3 also shows the run time of the method
without the A* algorithm for decoding. The A* al-
gorithm gives significant reductions in runtime.

6.1 Comparison to an LP/ILP solver
To compare to a linear programming (LP) or inte-
ger linear programming (ILP) solver, we can im-
plement the dynamic programming part of our al-
gorithm (search over the set Y ′) through linear con-
straints, with a linear objective. The y(i) = 1 con-
straints are also linear. Hence we can encode our
relaxation within an LP or ILP. Having done this,
we tested the resulting LP or ILP using Gurobi, a
high-performance commercial grade solver. We also
compare to an LP or ILP where the dynamic pro-
gram makes use of states (w1, w2, n, r)—i.e., the
span (l,m) is dropped, making the dynamic pro-
gram smaller. Table 4 includes results of the time re-
quired to find a solution on sentences of length 1-15.
Both the LP and the ILP require very long running
times on these shorter sentences, and running times
on longer sentences are prohibitive. Our algorithm
is more efficient because it leverages the structure of
the problem, by directly using a combinatorial algo-
rithm (dynamic programming).



Comparison to LP/ILP Decoding

method ILP LP
set length mean median mean median % frac.

Y ′′ 1-10 275.2 132.9 10.9 4.4 12.4 %
11-15 2,707.8 1,138.5 177.4 66.1 40.8 %
16-20 20,583.1 3,692.6 1,374.6 637.0 59.7 %

Y ′ 1-10 257.2 157.7 18.4 8.9 1.1 %
11-15 N/A N/A 476.8 161.1 3.0 %

Table 4: Average and median time of the LP/ILP solver (in
seconds). % frac. indicates how often the LP gives a fractional
answer. Y ′ indicates the dynamic program using set Y ′ as de-
fined in Section 4.1, and Y ′′ indicates the dynamic program us-
ing states (w1, w2, n, r). The statistics for ILP for length 16-20
is based on 50 sentences.

6.2 Comparison to MOSES
We now describe comparisons to the phrase-based
decoder implemented in MOSES. MOSES uses
beam search to find approximate solutions.

The distortion limit described in section 3 is the
same as that in Koehn et al. (2003), and is the same
as that described in the user manual for MOSES
(Koehn et al., 2007). However, a complicating fac-
tor for our comparisons is that MOSES uses an ad-
ditional distortion constraint, not documented in the
manual, which we describe here.4 We call this con-
straint the gap constraint. We will show in experi-
ments that without the gap constraint, MOSES fails
to produce translations on many examples. In our
experiments we will compare to MOSES both with
and without the gap constraint (in the latter case, we
discard examples where MOSES fails).

We now describe the gap constraint. For a se-
quence of phrases p1, . . . , pk define θ(p1 . . . pk) to
be the index of the left-most source-language word
not translated in this sequence. For example, if
the bit-string for p1 . . . pk is 111001101000, then
θ(p1 . . . pk) = 4. A sequence of phrases p1 . . . pL
satisfies the gap constraint if and only if for k =
2 . . . L, |t(pk) + 1 − θ(p1 . . . pk)| ≤ d. where d is
the distortion limit. We will call MOSES without
this restriction MOSES-nogc, and MOSES with this
restriction MOSES-gc.

Results for MOSES-nogc Table 5 shows the
number of examples where MOSES-nogc fails to
give a translation, and the number of search errors
for those cases where it does give a translation, for
a range of beam sizes. A search error is defined as a
case where our algorithm produces an exact solution

4Personal communication from Philipp Koehn; see also the
software for MOSES.

Beam size Fails # search errors percentage
100 650/1,818 214/1,168 18.32 %
200 531/1,818 207/1,287 16.08 %

1000 342/1,818 115/1,476 7.79 %
10000 169/1,818 68/1,649 4.12 %

Table 5: Table showing the number of examples where
MOSES-nogc fails to give a translation, and the num-
ber/percentage of search errors for cases where it does give a
translation.

Diff. MOSES-gc MOSES-gc MOSES-nogc
s =100 s =200 s=1000

0.000 – 0.125 66 (24.26%) 65 (24.07%) 32 ( 27.83%)
0.125 – 0.250 59 (21.69%) 58 (21.48%) 25 ( 21.74%)
0.250 – 0.500 65 (23.90%) 65 (24.07%) 25 ( 21.74%)
0.500 – 1.000 49 (18.01%) 49 (18.15%) 23 ( 20.00%)
1.000 – 2.000 31 (11.40%) 31 (11.48%) 5 ( 4.35%)
2.000 – 4.000 2 ( 0.74%) 2 ( 0.74%) 3 ( 2.61%)
4.000 –13.000 0 ( 0.00%) 0 ( 0.00%) 2 ( 1.74%)

Table 6: Table showing statistics for the difference between the
translation score from MOSES, and from the optimal deriva-
tion, for those sentences where a search error is made. For
MOSES-gc we include cases where the translation produced by
our system is not reachable by MOSES-gc. The average score
of the optimal derivations is -62.43.

that has higher score than the output from MOSES-
nogc. The number of search errors is significant,
even for large beam sizes.

Results for MOSES-gc MOSES-gc uses the gap
constraint, and thus in some cases our decoder will
produce derivations which MOSES-gc cannot reach.
Among the 1,818 sentences where we produce a so-
lution, there are 270 such derivations. For the re-
maining 1,548 sentences, MOSES-gc makes search
errors on 2 sentences (0.13%) when the beam size is
100, and no search errors when the beam size is 200,
1,000, or 10,000.

Finally, table 6 shows statistics for the magnitude
of the search errors that MOSES-gc and MOSES-
nogc make.

7 Conclusions
We have described an exact decoding algorithm for
phrase-based translation models, using Lagrangian
relaxation. The algorithmic construction we have
described may also be useful in other areas of NLP,
for example natural language generation. Possi-
ble extensions to the approach include methods that
incorporate the Lagrangian relaxation formulation
within learning algorithms for statistical MT: we see
this as an interesting avenue for future research.



Number of Iterations Required

# iter. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-7 166 (89.7 %) 219 (39.2 %) 34 ( 6.0 %) 2 ( 0.6 %) 0 ( 0.0 %) 421 (23.1 %) 23.1 %
8-15 17 ( 9.2 %) 187 (33.5 %) 161 (28.4 %) 30 ( 8.6 %) 3 ( 1.8 %) 398 (21.8 %) 44.9 %
16-30 1 ( 0.5 %) 93 (16.7 %) 208 (36.7 %) 112 (32.3 %) 22 ( 13.1 %) 436 (23.9 %) 68.8 %
31-60 1 ( 0.5 %) 52 ( 9.3 %) 105 (18.6 %) 99 (28.5 %) 62 ( 36.9 %) 319 (17.5 %) 86.3 %
61-120 0 ( 0.0 %) 7 ( 1.3 %) 54 ( 9.5 %) 89 (25.6 %) 45 ( 26.8 %) 195 (10.7 %) 97.0 %
121-250 0 ( 0.0 %) 0 ( 0.0 %) 4 ( 0.7 %) 14 ( 4.0 %) 31 ( 18.5 %) 49 ( 2.7 %) 99.7 %
x 0 ( 0.0 %) 0 ( 0.0 %) 0 ( 0.0 %) 1 ( 0.3 %) 5 ( 3.0 %) 6 ( 0.3 %) 100.0 %

Table 1: Table showing the number of iterations taken for the algorithm to converge. x indicates sentences that fail to
converge after 250 iterations. 97% of the examples converge within 120 iterations.

have or haven’t been translated in a hypothesis (par-
tial derivation). Note that if C = {1 . . . N}, we have
Y ′
C = Y , and the dynamic program will correspond

to exhaustive dynamic programming.

We can again run a Lagrangian relaxation algo-
rithm, using the set Y ′

C in place of Y ′. We will use
Lagrange multipliers u(i) to enforce the constraints
y(i) = 1 for i /∈ C. Our goal will be to find a
small set of constraints C, such that Lagrangian re-
laxation will successfully recover an optimal solu-
tion. We will do this by incrementally adding el-
ements to C; that is, by incrementally adding con-
straints that tighten the relaxation.

The intuition behind our approach is as follows.
Say we run the original algorithm, with the set Y ′,
for several iterations, so that L(u) is close to con-
vergence (i.e., L(u) is close to its minimal value).
However, assume that we have not yet generated a
solution yt such that yt(i) = 1 for all i. In this case
we have some evidence that the relaxation may not
be tight, and that we need to add some constraints.
The question is, which constraints to add? To an-
swer this question, we run the subgradient algorithm
for K more iterations (e.g., K = 10), and at each it-
eration track which constraints of the form y(i) = 1
are violated. We then choose C to be the G con-
straints (e.g., G = 3) that are violated most often
during the K additional iterations, and are not ad-
jacent to each other. We recursively call the algo-
rithm, replacing Y ′ by Y ′

C ; the recursive call may
then return an exact solution, or alternatively again
add more constraints and make a recursive call.

Figure 3 depicts the resulting algorithm. We ini-
tially make a call to the algorithm Optimize(C, u)
with C equal to the empty set (i.e., no hard con-
straints), and with u(i) = 0 for all i. In an initial
phase the algorithm runs subgradient steps, while

the dual is still improving. In a second step, if a so-
lution has not been found, the algorithm runs for K
more iterations, thereby choosing G additional con-
straints, then recursing.

If at any stage the algorithm finds a solution y∗

such that y∗(i) = 1 for all i, then this is the so-
lution to our original problem, argmaxy∈Y f(y).
This follows because for any C ⊆ {1 . . . N} we
have Y ⊆ Y ′

C ; hence the theorems in section 4.3 go
through for Y ′

C in place of Y ′, with trivial modifica-
tions. Note also that the algorithm is guaranteed to
eventually find the optimal solution, because even-
tually C = {1 . . . N}, and Y = Y ′

C .
The remaining question concerns the “dual still

improving” condition; i.e., how to determine that the
first phase of the algorithm should terminate. We do
this by recording the first and second best dual val-
ues L(u′) and L(u′′) in the sequence of Lagrange
multipliers u1, u2, . . . generated by the algorithm.
Suppose that L(u′′) first occurs at iteration t′′. If
L(u′)−L(u′′)

t−t′′ < ε, we say that the dual value does not
decrease enough. The value for ε is a parameter of
the approach: in experiments we used ε = 0.002.

See the supplementary material for this submis-
sion for an example run of the algorithm.

When C #= ∅, A* search can be used for de-
coding, with the dynamic program for Y ′ provid-
ing admissible estimates for the dynamic program
for Y ′

C . Experiments show that A* gives significant
improvements in efficiency. The supplementary ma-
terial contains a full description of the A* algorithm.

6 Experiments

In this section, we present experimental results to
demonstrate the efficiency of the decoding algo-
rithm. We compare to MOSES (Koehn et al., 2007),
a phrase-based decoder using beam search, and to



Summary

presented dual decomposition as a method for decoding in NLP

formal guarantees

• gives certificate or approximate solution

• can improve approximate solutions by tightening relaxation

efficient algorithms

• uses fast combinatorial algorithms

• can improve speed with lazy decoding

widely applicable

• demonstrated algorithms for a wide range of NLP tasks
(parsing, tagging, alignment, mt decoding)
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