On Dual Decomposition and Linear Programming Relaxations for Natural Language Processing

> Alexander M. Rush, David Sontag, Michael Collins, and Tommi Jaakkola

Dynamic Programming

Dynamic programming is a dominant technique in NLP.

- Fast
- Exact
- Easy to implement

Examples:

- Viterbi algorithm for hidden Markov models
- CKY algorithm for weighted context-free grammars

$$y^* = \arg \max_y f(y) \leftarrow \text{Decoding}$$

Model Complexity

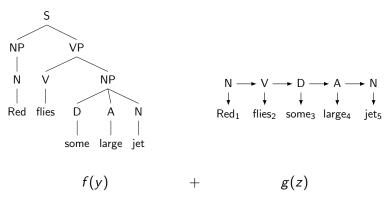
Unfortunately, dynamic programming algorithms do not scale well with model complexity.

As our models become complex, these algorithms can explode in terms of computational or implementational complexity.

Integration:

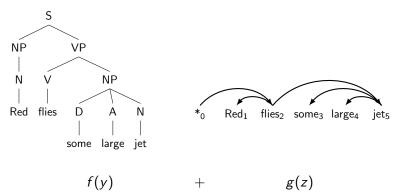
- $f \leftarrow \mathsf{Easy}$
- $g \leftarrow \mathsf{Easy}$
- $f + g \leftarrow Hard$

Integration (1)



- Classical problem in NLP.
- The dynamic programming intersection is prohibitively slow and complicated to implement.

Integration (2)



- Important for improving parsing accuracy.
- The dynamic programming intersection is slow and complicated to implement.

Dual Decomposition

A general technique for constructing decoding algorithms

Solve complicated models

$$y^* = \arg \max_y f(y)$$

by decomposing into smaller problems.

Upshot: Can utilize a toolbox of combinatorial algorithms.

- Dynamic programming
- Minimum spanning tree
- Shortest path
- Min-Cut

. . .

Dual Decomposition Algorithms

Simple - Uses basic dynamic programming algorithms

Efficient - Faster than full dynamic programming intersections

Strong Guarantees - Gives a certificate of optimality when exact

In experiments, we find the global optimum on 99% of examples.

Widely Applicable - Similar techniques extend to other problems

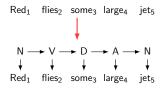
Roadmap

Algorithm

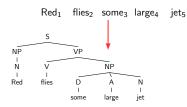
Experiments

LP Relaxations

Integrated Parsing and Tagging

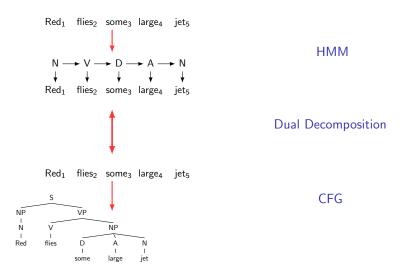


HMM

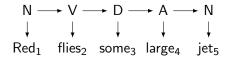


CFG

Integrated Parsing and Tagging

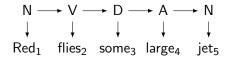


HMM for Tagging



- ▶ Let Z be the set of all valid taggings of a sentence and g(z) be a scoring function.
- e.g. $g(z) = \log p(\text{Red}_1|N) + \log p(V|N) + ...$

HMM for Tagging

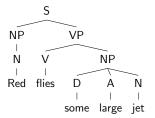


 Let Z be the set of all valid taggings of a sentence and g(z) be a scoring function.

e.g. $g(z) = \log p(\text{Red}_1|N) + \log p(V|N) + ...$

$$z^* = rg\max_{z \in \mathcal{Z}} g(z) \leftarrow Viterbi decoding$$

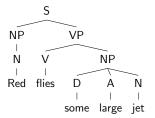
CFG for Parsing



Let Y be the set of all valid parse trees for a sentence and
 f(y) be a scoring function.

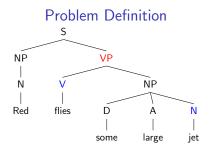
e.g. $f(y) = \log p(S \rightarrow NP VP|S) + \log p(NP \rightarrow N|NP) + ...$

CFG for Parsing



Let Y be the set of all valid parse trees for a sentence and
 f(y) be a scoring function.

e.g. $f(y) = \log p(S \rightarrow NP VP|S) + \log p(NP \rightarrow N|NP) + ...$ $y^* = \arg \max_{y \in \mathcal{Y}} f(y) \leftarrow \mathsf{CKY} \mathsf{Algorithm}$



Find parse tree that optimizes

$$score(S \rightarrow NP VP) + score(VP \rightarrow V NP) +$$

 $\dots + \textit{score}(Red_1, N) + \textit{score}(V, N) + \dots$

Conventional Approach (Bar Hillel et al., 1961)

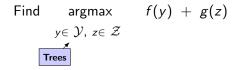
• Replace rules like $S \rightarrow NP VP$

with rules like $S_{N,N} \rightarrow NP_{N,V} VP_{V,N}$

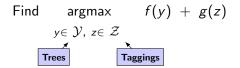
Painful. $O(t^6)$ increase in complexity for trigram tagging.

Find
$$\underset{y \in \mathcal{Y}, z \in \mathcal{Z}}{\operatorname{argmax}} f(y) + g(z)$$

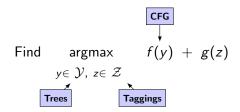
such that for all
$$i, t, y(i, t) = z(i, t)$$



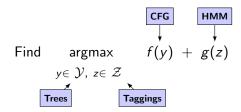
such that for all
$$i, t, y(i, t) = z(i, t)$$



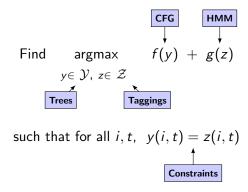
such that for all i, t, y(i, t) = z(i, t)



such that for all i, t, y(i, t) = z(i, t)



such that for all i, t, y(i, t) = z(i, t)



Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

 $y^{(k)} \leftarrow \mathsf{Decode} \ (f(y) + \mathrm{penalty})$ by CKY Algorithm

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

 $y^{(k)} \leftarrow \text{Decode } (f(y) + \text{penalty}) \text{ by CKY Algorithm}$ $z^{(k)} \leftarrow \text{Decode } (g(z) - \text{penalty}) \text{ by Viterbi Decoding}$

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

 $y^{(k)} \leftarrow \text{Decode } (f(y) + \text{penalty}) \text{ by CKY Algorithm}$ $z^{(k)} \leftarrow \text{Decode } (g(z) - \text{penalty}) \text{ by Viterbi Decoding}$ If $y^{(k)}(i, t) = z^{(k)}(i, t)$ for all i, t Return $(y^{(k)}, z^{(k)})$

Set penalty weights equal to 0 for the tag at each position.

For k = 1 to K

 $y^{(k)} \leftarrow \text{Decode } (f(y) + \text{penalty}) \text{ by CKY Algorithm}$ $z^{(k)} \leftarrow \text{Decode } (g(z) - \text{penalty}) \text{ by Viterbi Decoding}$ If $y^{(k)}(i, t) = z^{(k)}(i, t)$ for all i, t Return $(y^{(k)}, z^{(k)})$

Else Update penalty weights based on $y^{(k)}(i, t) - z^{(k)}(i, t)$

Penalties u(i, t) = 0 for all i, t

$$y^* = \arg \max_{y \in \mathcal{Y}} (f(y) + \sum_{i,t} u(i,t)y(i,t))$$

Viterbi Decoding

Red₁ flies₂ some₃ large₄ jet₅

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,t} u(i,t)z(i,t))$$

Key

CKY Parsing NP VP A ND A V Red flies some large jet $y^* = \arg \max_{y \in \mathcal{Y}} (f(y) + \sum_{i,t} u(i,t)y(i,t))$

Viterbi Decoding

Red₁ flies₂ some₃ large₄ jet₅

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,t} u(i,t)z(i,t))$$

Key

Penalties u(i, t) = 0 for all i, t

CKY Parsing S NP VP A Ν D V A ī. T Red flies jet some large

$$y^* = \arg \max_{y \in \mathcal{Y}} (f(y) + \sum_{i,t} u(i,t)y(i,t))$$

Viterbi Decoding

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,t} u(i,t)z(i,t))$$

Key

Penalties u(i, t) = 0 for all i, t

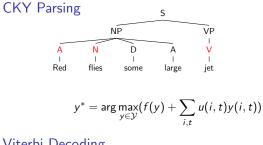
CKY Parsing S NP A ND A VP A VP A VP A VP A V Red flies some large jet y* = arg max y (f(y) + $\sum_{i,t} u(i,t)y(i,t)$)

Viterbi Decoding

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,t} u(i,t)z(i,t))$$

Key

Penalties u(i, t) = 0 for all i, t



Viterbi Decoding

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,t} u(i,t)z(i,t))$$

Key

f(y) Y g(z)HMM \Leftarrow \mathcal{Z} Taggings \Leftarrow y(i, t) = 1 if y contains tag t at position i

Penalties		
u(i,t) = 0 for	all i,t	
Iteration 1		
u(1,A)	-1	
u(1, N)	1	
u(2, N)	-1	
u(2, V)	1	
u(5, V)	-1	
u(5, N)	1	

Penalties

u(i,	t) = 0	for all	i,t
lte	eration	1	
u(1, A)	-1	
и(1, N)	1	
и(2, N)	-1	
и(2, V)	1	
и(5, V)	-1	
и(5, N)	1	
u(u(2, V) 5, V)	1 -1	

$$y^* = \arg \max_{y \in \mathcal{Y}} (f(y) + \sum_{i,t} u(i,t)y(i,t))$$

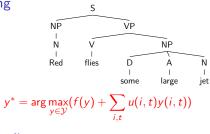
)

Viterbi Decoding

 Red_1 flies₂ some₃ large₄ jet₅

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,t} u(i,t)z(i,t))$$

Key



Penalties

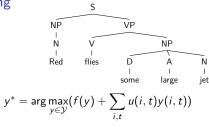
 $\begin{array}{c} u(i,t) = 0 \text{ for all } i,t \\ \hline \\ \underline{\text{Iteration } 1} \\ \hline u(1,A) & -1 \\ u(1,N) & 1 \\ u(2,N) & -1 \\ u(2,V) & -1 \\ u(2,V) & 1 \\ u(5,V) & -1 \\ u(5,N) & 1 \end{array}$

Viterbi Decoding

 Red_1 flies₂ some₃ large₄ jet₅

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,t} u(i,t)z(i,t))$$

Key



Viterbi Decoding

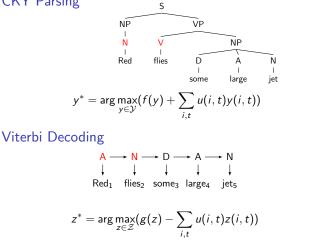
$$\begin{array}{cccc} A \longrightarrow N \longrightarrow D \longrightarrow A \longrightarrow N \\ \downarrow & \downarrow & \downarrow & \downarrow \\ Red_1 & flies_2 & some_3 & large_4 & jet_5 \end{array}$$

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,t} u(i,t)z(i,t))$$

Key

Penalties

 $\begin{array}{c} u(i,t) = 0 \text{ for all } i,t \\ \hline \\ \underline{\text{Iteration 1}} \\ \hline u(1,A) & -1 \\ u(1,N) & 1 \\ u(2,N) & -1 \\ u(2,V) & 1 \\ u(2,V) & 1 \\ u(5,V) & -1 \\ u(5,N) & 1 \end{array}$



Penalties

u(i, t) = 0 for all i, tIteration 1 u(1, A)-1 u(1, N) = 1u(2, N) -1u(2, V) = 1u(5, V)-1 u(5, N)1 Iteration 2 u(5, V)-1 u(5, N)1

Key

f(y) \mathcal{Y} ⇐ CFG⇐ Parse Trees HMM g(z) \Leftarrow 7. Taggings \Leftarrow y(i, t) = 1 if y contains tag t at position i

Penalties

u(i,t)=0 for	or all <i>i</i> ,t
Iteration 1	_
u(1,A)	-1
u(1, N)	1
u(2, N)	-1
u(2, V)	1
u(5, V)	-1
u(5, N)	1

Iteration 2	
u(5, V)	-1
u(5, N)	1

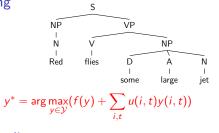
$y^* = \arg\max_{y \in \mathcal{Y}} (f(y) +$	$\sum_{i,t} u(i,t) y(i,t))$
--	-----------------------------

Viterbi Decoding

 Red_1 flies₂ some₃ large₄ jet₅

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,t} u(i,t)z(i,t))$$

Key



Viterbi Decoding

Red_1	$flies_2$	$some_3$	$large_4$	jet ₅
---------	-----------	----------	-----------	------------------

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,t} u(i,t)z(i,t))$$

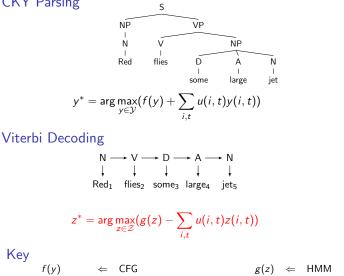
Penalties

 $\begin{array}{c} u(i,t) = 0 \text{ for all } i,t \\ \hline \\ \hline \\ u(1,A) & -1 \\ u(1,N) & 1 \\ u(2,N) & -1 \\ u(2,V) & -1 \\ u(2,V) & 1 \\ u(5,V) & -1 \\ u(5,N) & 1 \end{array}$

Iteration 2	
u(5, V)	-1
u(5, N)	1

Key

CKY Parsing



Penalties

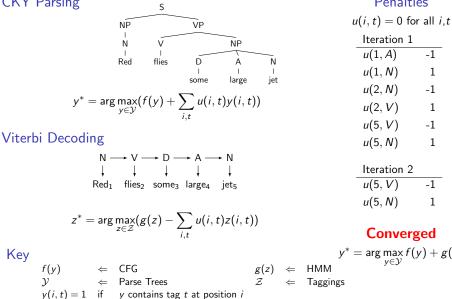
u(i,t) = 0 for	r all <i>i</i> ,t
Iteration 1	
u(1,A)	-1
u(1, N)	1
u(2, N)	-1
u(2, V)	1
u(5, V)	-1
u(5, N)	1
Iteration 2	
u(5, V)	-1
u(5, N)	1

Key

f(y) \mathcal{Y} $\begin{array}{ll} \leftarrow & \mathsf{CFG} \\ \leftarrow & \mathsf{Parse Trees} \end{array}$ g(z) Z ⇐ Taggings y(i, t) = 1 if y contains tag t at position i

CKY Parsing

Key



Penalties

Iteration 1 u(1, A)-1 u(1, N) = 1u(2, N)-1 u(2, V) = 1u(5, V) -1u(5, N)1

Iteration 2	
u(5, V)	-1
u(5, N)	1

Converged

$$y^* = \arg \max_{y \in \mathcal{Y}} f(y) + g(y)$$

Guarantees

Theorem

If at any iteration $y^{(k)}(i, t) = z^{(k)}(i, t)$ for all i, t, then $(y^{(k)}, z^{(k)})$ is the global optimum.

In experiments, we find the global optimum on 99% of examples.

Guarantees

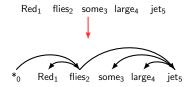
Theorem

If at any iteration $y^{(k)}(i, t) = z^{(k)}(i, t)$ for all i, t, then $(y^{(k)}, z^{(k)})$ is the global optimum.

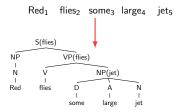
In experiments, we find the global optimum on 99% of examples.

If we do not converge to a match, we can still get a result (more in paper).

Integrated CFG and Dependency Parsing

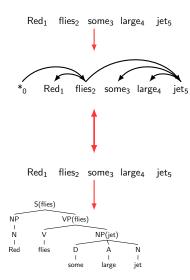


Dependency Model



Lexicalized CFG

Integrated CFG and Dependency Parsing



Dependency Model

Dual Decomposition

Lexicalized CFG

► Let Z be the set of all valid dependency parses of a sentence and g(z) be a scoring function.

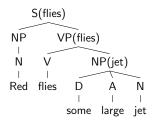
e.g.
$$g(z) = \log p(\text{some}_3|\text{jet}_5, \text{large}_4) + \dots$$

► Let Z be the set of all valid dependency parses of a sentence and g(z) be a scoring function.

e.g.
$$g(z) = \log p(\text{some}_3|\text{jet}_5, \text{large}_4) + \dots$$

$$z^* = \arg \max_{z \in \mathcal{Z}} g(z) \leftarrow \text{Eisner (2000) algorithm}$$

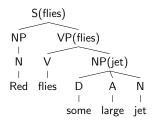
Lexicalized PCFG



Let Y be the set of all valid dependency parses of a sentence and f(y) be a scoring function.

e.g. $f(y) = \log p(S(\text{flies}) \rightarrow NP(\text{Red}) VP(\text{flies})|S(\text{flies})) + \dots$

Lexicalized PCFG



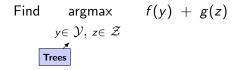
Let Y be the set of all valid dependency parses of a sentence and f(y) be a scoring function.

e.g. $f(y) = \log p(S(\text{flies}) \rightarrow NP(\text{Red}) VP(\text{flies})|S(\text{flies})) + \dots$

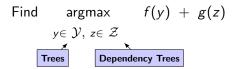
 $y^* = \arg \max_{y \in \mathcal{Y}} f(y) \leftarrow \text{Modified CKY algorithm}$

Find
$$\underset{y \in \mathcal{Y}, z \in \mathcal{Z}}{\operatorname{argmax}} f(y) + g(z)$$

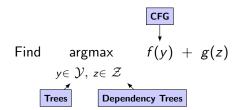
such that for all
$$i, j, y(i, j) = z(i, j)$$



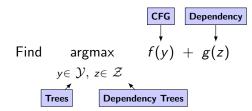
such that for all i, j, y(i, j) = z(i, j)



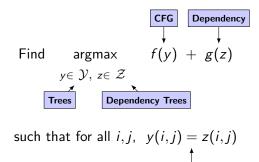
such that for all i, j, y(i, j) = z(i, j)



such that for all i, j, y(i, j) = z(i, j)



such that for all i, j, y(i, j) = z(i, j)



Constraints

CKY Parsing

Penalties u(i,j) = 0 for all i,j

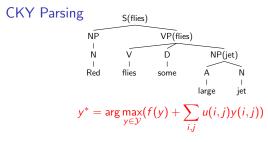
$$y^* = \arg \max_{y \in \mathcal{Y}} (f(y) + \sum_{i,j} u(i,j)y(i,j))$$

Dependency Parsing

 $*_0$ Red₁ flies₂ some₃ large₄ jet₅

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,j} u(i,j)z(i,j))$$

Key

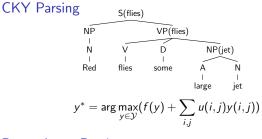


 $*_0$ Red₁ flies₂ some₃ large₄ jet₅

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,j} u(i,j)z(i,j))$$

Key

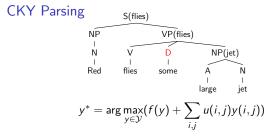
Penalties u(i,j) = 0 for all i,j

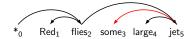


$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,j} u(i,j)z(i,j))$$

Key

Penalties u(i,j) = 0 for all i,j

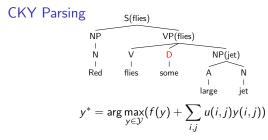




$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,j} u(i,j)z(i,j))$$

Key

Penalties u(i,j) = 0 for all i,j



Penalties u(i,j) = 0 for all i,j $\frac{\text{Iteration 1}}{u(2,3) - 1}$ u(5,3) = 1

Dependency Parsing

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,j} u(i,j)z(i,j))$$

Key

CKY Parsing

Penalties

u(i,j)=0	for all <i>i</i> , <i>j</i>
Iteration	1
u(2,3)	-1
u(5,3)	1

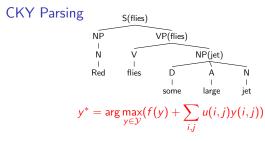
$$y^* = \arg \max_{y \in \mathcal{Y}} (f(y) + \sum_{i,j} u(i,j)y(i,j))$$

Dependency Parsing

 $*_0$ Red₁ flies₂ some₃ large₄ jet₅

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,j} u(i,j)z(i,j))$$

Key

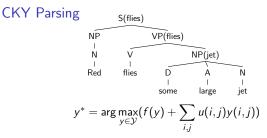


u(i,j)=0	for	all	i,j
Iteration	1		
u(2,3)		-1	
u(5,3)		1	

 $*_0$ Red₁ flies₂ some₃ large₄ jet₅

$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,j} u(i,j)z(i,j))$$

Key



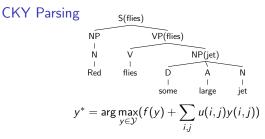
Penalties

u(i,j)=0	for	all	i,j
Iteration	1		
u(2,3)		-1	_
u(5,3)		1	

Dependency Parsing

 $z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,j} u(i,j)z(i,j))$

Key



$$z^* = \arg \max_{z \in \mathcal{Z}} (g(z) - \sum_{i,j} u(i,j)z(i,j))$$

Key

Penalties

u(i,j)=0	for	all	i,j
Iteration	1		
u(2,3)		-1	
u(5,3)		1	

Converged $y^* = \arg \max_{y \in \mathcal{V}} f(y) + g(y)$

Roadmap

Algorithm

Experiments

LP Relaxations

Experiment

Properties:

- Exactness
- Parsing Accuracy

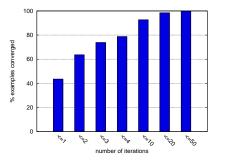
Experiments on:

English Penn Treebank

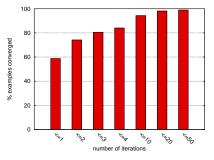
Models

- Collins (1997) Model 1
- Semi-Supervised Dependency Parser (Koo, 2008)
- Trigram Tagger (Toutanova, 2000)

How quickly do the models converge?

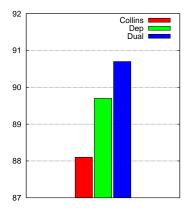


Integrated Dependency Parsing



Integrated POS Tagging

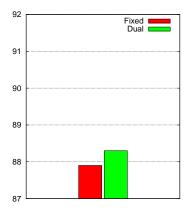
Integrated Constituency and Dependency Parsing: Accuracy



F_1 Score

- Collins (1997) Model 1
- Fixed, First-best Dependencies from Koo (2008)
- Dual Decomposition

Integrated Parsing and Tagging: Accuracy



F_1 Score

- ▶ Fixed, First-Best Tags From Toutanova (2000)
- Dual Decomposition

Roadmap

Algorithm

Experiments

LP Relaxations

Dual Decomposition and Linear Programming Relaxations

Theorem

If the dual decomposition algorithm converges, then (y^(k), z^(k)) is the global optimum.

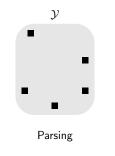
Questions

- What problem is dual decomposition solving?
- How come the algorithm doesn't always converge?

Dual decomposition searches over a linear programming relaxation of the original problem.

Convex Hulls for CKY

A parse tree can be represented as a binary vector $y \in \mathcal{Y}$. $y(A \rightarrow B \ C, i, j, k) = 1$ if rule $A \rightarrow B \ C$ is used at span i, j, k.



• If f is linear, $\arg \max_{y \in conv(\mathcal{Y})} f(y)$ is a linear program.

▶ The best point in an LP is a vertex. So CKY solves this LP.

Convex Hulls for CKY

A parse tree can be represented as a binary vector $y \in \mathcal{Y}$. $y(A \rightarrow B \ C, i, j, k) = 1$ if rule $A \rightarrow B \ C$ is used at span i, j, k.

▶ If f is linear, $\arg \max_{y \in conv(\mathcal{Y})} f(y)$ is a linear program.

▶ The best point in an LP is a vertex. So CKY solves this LP.

Convex Hulls for CKY

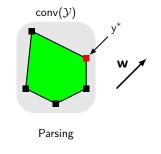
A parse tree can be represented as a binary vector $y \in \mathcal{Y}$. $y(A \rightarrow B \ C, i, j, k) = 1$ if rule $A \rightarrow B \ C$ is used at span i, j, k.

• If f is linear, $\arg \max_{y \in conv(\mathcal{Y})} f(y)$ is a linear program.

▶ The best point in an LP is a vertex. So CKY solves this LP.

Convex Hulls for CKY

A parse tree can be represented as a binary vector $y \in \mathcal{Y}$. $y(A \rightarrow B \ C, i, j, k) = 1$ if rule $A \rightarrow B \ C$ is used at span i, j, k.

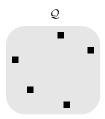


• If f is linear, $\arg \max_{y \in conv(\mathcal{Y})} f(y)$ is a linear program.

▶ The best point in an LP is a vertex. So CKY solves this LP.

Combined Problem $Q = \{(y, z): y \in \mathcal{Y}, z \in \mathcal{Z}, \}$

$$y(i,t) = z(i,t)$$
 for all (i,t)



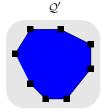
$$\mathcal{Q} = \{(y, z) \colon y \in \mathcal{Y}, z \in \mathcal{Z}, \ y(i, t) = z(i, t) \text{ for all } (i, t)\}$$

 \mathcal{Q}

$$\mathcal{Q} = \{(y, z) \colon y \in \mathcal{Y}, z \in \mathcal{Z}, \ y(i, t) = z(i, t) \text{ for all } (i, t)\}$$

 $\mathsf{conv}(\mathcal{Q})$

$$egin{aligned} \mathcal{Q} &= \{(y,z)\colon y\in\mathcal{Y}, z\in\mathcal{Z},\ &y(i,t)=z(i,t) ext{ for all }(i,t)\} \end{aligned}$$



$$\begin{aligned} \mathcal{Q}' = \{(\mu,\nu) \colon \mu \in \operatorname{conv}(\mathcal{Y}), \nu \in \operatorname{conv}(\mathcal{Z}), \\ \mu(i,t) = \nu(i,t) \text{ for all } (i,t) \} \end{aligned}$$

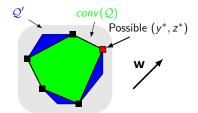
Dual decomposition searches over \mathcal{Q}^\prime

$$\mathcal{Q} = \{(y, z) \colon y \in \mathcal{Y}, z \in \mathcal{Z}, \ y(i, t) = z(i, t) \text{ for all } (i, t)\}$$

$$\begin{aligned} \mathcal{Q}' = \{(\mu,\nu) \colon \mu \in \operatorname{conv}(\mathcal{Y}), \nu \in \operatorname{conv}(\mathcal{Z}), \\ \mu(i,t) = \nu(i,t) \text{ for all } (i,t) \} \end{aligned}$$

Dual decomposition searches over \mathcal{Q}^\prime

$$egin{aligned} \mathcal{Q} &= \{(y,z)\colon y\in\mathcal{Y}, z\in\mathcal{Z},\ &y(i,t)=z(i,t) ext{ for all } (i,t)\} \end{aligned}$$

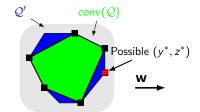


$$\mathcal{Q}' = \{(\mu, \nu) \colon \mu \in \operatorname{conv}(\mathcal{Y}), \nu \in \operatorname{conv}(\mathcal{Z}), \\ \mu(i, t) = \nu(i, t) \text{ for all } (i, t)\}$$

Dual decomposition searches over \mathcal{Q}'

Depending on the weight vector, $(y^*, z^*) \in Q'$ could be in Q or in the strict outer bound.

$$egin{aligned} \mathcal{Q} &= \{(y,z)\colon y\in\mathcal{Y}, z\in\mathcal{Z},\ &y(i,t)=z(i,t) ext{ for all } (i,t)\} \end{aligned}$$

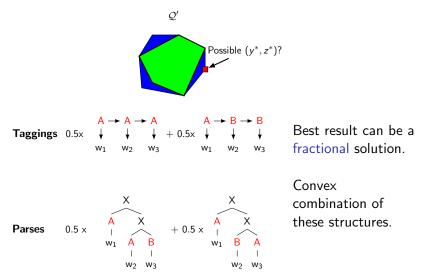


$$egin{aligned} \mathcal{Q}' = \{(\mu,
u) \colon \mu \in \operatorname{conv}(\mathcal{Y}),
u \in \operatorname{conv}(\mathcal{Z}), \ \mu(i, t) =
u(i, t) ext{ for all } (i, t) \} \end{aligned}$$

Dual decomposition searches over \mathcal{Q}'

Depending on the weight vector, $(y^*, z^*) \in Q'$ could be in Q or in the strict outer bound.

Are there points strictly in the outer bound?



Summary

A Dual Decomposition algorithm for integrated decoding

Simple - Uses only simple, off-the-shelf dynamic programming algorithms to solve a harder problem.

Efficient - Faster than classical methods for dynamic programming intersection.

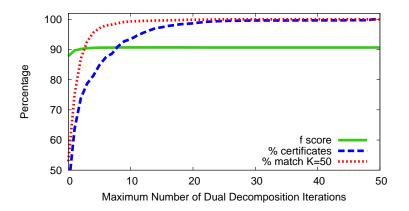
Strong Guarantees - Solves a linear programming relaxation which gives a certificate of optimality.

Finds the exact solution on 99% of the examples.

Widely Applicable - Similar techniques extend to other problems

Appendix

Iterative Progress



Deriving the Algorithm

Goal: $y^* = \arg \max_{y \in \mathcal{Y}} f(y)$ Lagrangian: $L(u, y, z) = f(z) + g(y) + \sum_{i \neq j} u(i, j) (y(i, j) - z(i, j))$ Rewrite: $\arg \max_{z \in \mathcal{Z}, y \in \mathcal{Y}} f(z) + g(y)$ s.t. z(i, j) = y(i, j) for all i, j

Deriving the Algorithm

Goal:
 $y^* = \arg \max_{y \in \mathcal{Y}} f(y)$ Rewrite:
 $\arg \max_{z \in \mathcal{Z}, y \in \mathcal{Y}} f(z) + g(y)$
s.t. z(i,j) = y(i,j) for all i,j

Lagrangian:
$$L(u, y, z) = f(z) + g(y) + \sum_{i,j} u(i,j) (y(i,j) - z(i,j))$$

The dual problem is to find $\min_{u} L(u)$ where

$$L(u) = \max_{y \in \mathcal{Y}, z \in \mathcal{Z}} L(u, y, z) = \max_{z \in \mathcal{Z}} \left(f(z) + \sum_{i,j} u(i,j) z(i,j) \right) + \max_{y \in \mathcal{Y}} \left(g(y) - \sum_{i,j} u(i,j) y(i,j) \right)$$

Dual is an upper bound: $L(u) \ge f(z^*) + g(y^*)$ for any u

A Subgradient Algorithm for Minimizing L(u)

$$L(u) = \max_{z \in \mathcal{Z}} \left(f(z) + \sum_{i,j} u(i,j) y(i,j) \right) + \max_{y \in \mathcal{Y}} \left(g(y) - \sum_{i,j} u(i,j) z(i,j) \right)$$

L(u) is convex, but not differentiable. A subgradient of L(u) at u is a vector g_u such that for all v,

$$L(v) \geq L(u) + g_u \cdot (v - u)$$

Subgradient methods use updates $u' = u - \alpha g_u$

In fact, for our L(u), $g_u(i,j) = z^*(i,j) - y^*(i,j)$

Related Work

- Methods that use general purpose linear programming or integer linear programming solvers (Martins et al. 2009; Riedel and Clarke 2006; Roth and Yih 2005)
- Dual decomposition/Lagrangian relaxation in combinatorial optimization (Dantzig and Wolfe, 1960; Held and Karp, 1970; Fisher 1981)
- Dual decomposition for inference in MRFs (Komodakis et al., 2007; Wainwright et al., 2005)
- Methods that incorporate combinatorial solvers within loopy belief propagation (Duchi et al. 2007; Smith and Eisner 2008)