Machine Translation	An Example French-to-English from Google translate: Dans une évaluation stratégique du conflit afghan remise à Robert Gates le 30 août, et révélée par le Washington Post lundi, le général McChrystal prévient que sans augmentation des moyens militaires en Afghanistan, la coalition risquait d'y subir "un échec". ↓				
1	In a strategic assessment of the Afghanistan conflict given to Robert Gates August 30, revealed by The Washington Post Monday, General McChrystal warned that without an increase in military resources in Afghanistan, the coalition might undergo a "failure."				
Machine Translation: Background	Phrase-Based Models				
 A long-standing problem in Artificial Intelligence Much work in 1970's, 1980's, on rule-based systems (e.g., Systran) In early 1990's, IBM researchers began work on statistical 	 First stage in training a phrase-based model is extraction of a <i>phrase-based (PB) lexicon</i> A PB lexicon pairs strings in one language with strings in another language, e.g., 				
systemsBasic idea: given a <i>parallel corpus</i> of example translations, can we induce a statistical model of a translation process between two languages?Goes back to ideas from Warren Weaver (1949), who had the idea of framing machine translation as a cryptographic problem.	nach Kanada \leftrightarrow in Canadazur Konferenz \leftrightarrow to the conferenceMorgen \leftrightarrow tomorrowfliege \leftrightarrow will fly				

An Example (from tutorial by Koehn and Knight)

• A training example (Spanish/English sentence pair):

Spanish: Maria no daba una bofetada a la bruja verde

English: Mary did not slap the green witch

• Some (not all) phrase pairs extracted from this example:

(Maria \leftrightarrow Mary), (bruja \leftrightarrow witch), (verde \leftrightarrow green), (no \leftrightarrow did not), (no daba una bofetada \leftrightarrow did not slap), (daba una bofetada a la \leftrightarrow slap the)

• We'll see how to do this using *alignments* from the IBM models (e.g., from IBM model 2)

An Example Alignment

French:

le conseil a rendu son avis , et nous devons à présent adopter un nouvel avis sur la base de la première position .

English:

the council has stated its position , and now , on the basis of the first position , we again have to give our opinion .

Alignment:

the/le council/conseil has/à stated/rendu its/son position/avis J, and/et now/présent JNULL on/sur the/le basis/base of/de the/la first/première position/position JNULL we/nous again/NULL have/devons to/a give/adopter our/nouvel opinion/avis J.

Recovered using the EM algorithm, typically using models developed at IBM in the early 1990s

6

Representation as an Alignment Matrix

5

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did		•							
not		•							
slap			•	•	•				
the						•	•		
green									•
witch								•	

Note that the alignment is potentially many-to-many: multiple Spanish words can be aligned to a single English word, and vice versa.

Extracting Phrase Pairs from the Alignment Matrix

	Maria	no	daba	una	bof'	a	la	bruja	verde
Mary	•								
did		•							
not		•							
slap			•	•	•				
the						•	•		
green									•
witch								•	

- A phrase-pair consists of a sequence of English words, *e*, paired with a sequence of foreign words, *f*
- A phrase-pair (e, f) is consistent if there are no words in f aligned to words outside e, and there are no words in e aligned to words outside f
 e.g., (Mary did not, Maria no) is consistent. (Mary did, Maria no) is not consistent: "no" is aligned to "not", which is not in the string "Mary did"
- We extract all consistent phrase pairs from the training example. See Koehn, EACL 2006 tutorial, **pages 103-108** for illustration.

Probabilities for Phrase Pairs

• For any phrase pair (f, e) extracted from the training data, we can calculate

$$P(f|e) = \frac{Count(f,e)}{Count(e)}$$

e.g.,

 $P(\text{daba una bofetada} \mid \text{slap}) = \frac{Count(\text{daba una bofetada}, \text{slap})}{Count(\text{slap})}$

Phrase-Based Systems: A Sketch

9

Translate using a greedy, left-to-right decoding method

Today

Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren

- $Score = \underbrace{\log P(\text{Today} \mid \text{START})}_{\text{Language model}}$
 - + $\underbrace{\log P(\text{Heute} \mid \text{Today})}_{\text{Phrase model}}$
 - + $\underbrace{\log P(1-1 \mid 1-1)}_{\text{Distortion model}}$

An Example Phrase Translation Table

An example from Koehn, EACL 2006 tutorial. (Note that we have P(e|f) not P(f|e) in this example.)

• Phrase Translations for den Vorschlag

English	$P(\mathbf{e} \mathbf{f})$	English	$P(\mathbf{e} \mathbf{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

10

Phrase-Based Systems: A Sketch

Translate using a greedy, left-to-right decoding method

Today we shall be

Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren

Score = $\underbrace{\log P(\text{we shall be } | \text{ today})}_{\text{Language model}}$

+ $\log P(\text{werden wir} \mid \text{we will be})$

Phrase model

+ $\log P(2-3 \mid 2-4)$ Distortion model

Phrase-Based Systems: A Sketch Translate using a greedy, left-to-right decoding method Today we shall be debating Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren	Phrase-Based Systems: A Sketch Translate using a greedy, left-to-right decoding method Today we shall be debating the reopening Heute werden wir uber die Wiedereroffnung des Mont-Blanc- Tunnels diskutieren
13	14
Phrase-Based Systems: A Sketch Translate using a greedy, left-to-right decoding method Today we shall be debating the reopening of the Mont Blanc tunnel Heute werden wir uber die Wiedereroffnung des Mont-Blanc-Tunnels diskutieren	 Phrase-Based Systems: Formal Definitions (following notation in Jurafsky and Martin, chapter 25) We'd like to translate a French string f E is a sequence of l English phrases, e₁, e₂,, e_l. For example, e₁ = Mary, e₂ = did not, e₃ = slap, e₄ = the, e₅ = green witch E defines a possible translation, in this case e₁e₂ e₅ = Mary did not slap the green witch. F is a sequence of l foreign phrases, f₁, f₂,, f_l. For example, f₁ = Maria, f₂ = no, f₃ = dio una bofetada, f₄ = a la, f₅ = bruja verde a_i for i = 1l is the position of the first word of f_i in f. b_i for i = 1l is the position of the last word of f_i in f.
15	16

Phrase-Based Systems: Formal Definitions

• We then have

 $Cost(E, F) = P(E) \prod_{i=1}^{l} P(f_i|e_i) d(a_i - b_{i-1})$

- P(E) is the language model score for the string defined by E
- $P(f_i|e_i)$ is the phrase-table probability for the *i*'th phrase pair
- $d(a_i b_{i-1})$ is some probability/penalty for the distance between the *i*'th phrase and the (i - 1)'th phrase. Usually, we define

$$d(a_i - b_{i-1}) = \alpha^{|a_i - b_{i-1}|}$$

for some $\alpha < 1$.

• Note that this is *not* a coherent probability model

17

Another Example

Position	1	2	3	4	5	6
English	Mary	did not	slap	the	green	witch
Spanish	Maria	no	dio una bofetada	a la	verde	bruje

The original Spanish string was Maria no dio una bofetada a la bruje verde, so notice that the last two phrase pairs involve reordering

In this case,

$$\begin{array}{lll} Cost(E,F) &=& P_L(\text{Mary did not slap the green witch}) \times \\ && P(\text{Maria}|\text{Mary}) \times d(1) \times P(\text{no}|\text{did not}) \times d(1) \times \\ && P(\text{dio una bofetada}|\text{slap}) \times d(1) \times P(\text{a la}|\text{the}) \times d(1) \times \\ && P(\text{verde}|\text{green}) \times d(2) \times P(\text{bruja}|\text{witch}) \times d(1) \end{array}$$

Position 1 2 3 4 English Mary did not slap the Spanish Maria no dio una bofetada a la bruja verde In this case, $Cost(E, F) = P_L(Mary did not slap the green witch) \times$ $P(\text{Maria}|\text{Mary}) \times d(1) \times P(\text{no}|\text{did not}) \times d(1) \times d(1)$ $P(\text{dio una bofetada}|\text{slap}) \times d(1) \times P(\text{a la}|\text{the}) \times d(1) \times d(1$

 $P(\text{bruja verde}|\text{green witch}) \times d(1)$

An Example

5

green witch

 P_L is the score from a language model

18

The Decoding Problem

• For a given foreign string f, the decoding problem is to find

 $\arg\max_{(E,F)} Cost(E,F)$

where the $\arg \max$ is over all (E, F) pairs that are consistent with **f**

- See Koehn tutorial, EACL 2006, slides 29–57
- See Jurafsky and Martin, Chapter 25, Figure 25.30
- See Jurafsky and Martin, Chapter 25, section 25.8