Lecture 9: Lagrangian Relaxation for
Phrase-based Decoding

Michael Collins (joint work with Yin-Wen Chang)

March 30, 2011

The Phrase-Based Decoding Problem

» We have a source-language sentence xy,xs, ..., Ty
(z; is the i'th word in the sentence)

» A phrase p is a tuple (s, t, e) signifying that words z; . .. x;
have a target-language translation as e

» E.g., p= (2,5, the dog) specifies that words x5 ... x5 have a
translation as the dog

» Output from a phrase-based model is a derivation

Yy=pip2-..-pPL

where p; for j = 1... L are phrases. A derivation defines a
translation e(y) formed by concatenating the strings

e(pr)e(p2) .. .e(pr)

Scoring Derivations

» Each phrase p has a score g(p).

» For two consecutive phrases p, = (s,t,¢) and
pr+1 = (8,1, €'), the distortion distance is
ot,s)=1t+1—-4|

» The score for a derivation is

F) = b)) + 3 gl + 3 1 x 8(t(or). (o))

where 77 € R is the distortion penalty, and h(e(y)) is the
language model score

The

v

v

v

v

Decoding Problem

Y is the set of all valid derivations
For a derivation y, y(7) is the number of times word i is
translated
A derivation y = py, po, ..., pr is valid if:
» y(i)=1fori=1...N
» For each pair of consecutive phrases py, pxt1 for

k=1...L—1, we have 0(t(pr), s(pk+1)) < d, where d is the
distortion limit.

Decoding problem is to find

arg max
g may f(y)

Exact Dynamic Programming

» We can find

arg max f (y)

using dynamic programming
» But, the runtime (and number of states) is exponential in N.

» Dynamic programming states are of the form
(U)l, Wa, b7 T)

where

» w1, ws are last two words of a hypothesis

» b is a bit-string of length N, recording which words have been
translated (2VV possibilities)

» 71 is the end-point of the last phrase in the hypothesis

A Lagrangian Relaxation Algorithm

» Define) to be the set of derivations such that:

> S y(i) =N

» For each pair of consecutive phrases py, px+1 for
k=1...L—1, we have §(t(pk), s(pk+1)) < d, where d is the
distortion limit.

» Notes:

» We have dropped the y(i) = 1 constraints.
» We have Y C)/

Dynamic Programming over)’

» We can find

arg max
gmax f(y)

efficiently, using dynamic programming

» Dynamic programming states are of the form
(wla w2, M, T)

where

» w1y, ws are last two words of a hypothesis
» n is the length of the partial hypothesis
» 1 is the end-point of the last phrase in the hypothesis

A Lagrangian Relaxation Algorithm (continued)

» The original decoding problem is

arg max f (y)

» We can rewrite this as

argmax f(y) such that Vi, y(i) =1
yey!

» We deal with the y(i) = 1 constraints using Lagrangian
relaxation

A Lagrangian Relaxation Algorithm (continued)

The Lagrangian is
L(u,y) = fy) + Z u(z)(y(i) —1)

The dual objective is then

L(u) = max L(u, y).

yey’

and the dual problem is to solve

min L(u).

u

The Algorithm

Initialization: u%(i) <0 fori=1...N
fort=1...T

y' = argmax,cyy L(u'1,y)

if y!(i)=1 for i=1...N

return 3
else
fori=1...N

ul(i) = u'=1(i) — o (y'(i) — 1)

Figure: The decoding algorithm. af > 0 is the step size at the t'th
iteration.

An Example Run of the Algorithm

Input German: dadurch kinnen die qualitat und die auch weiterhin werden .
t L(u'™! ¥ (@) derivation y*

1100988 0022330020001 g qji;\ﬁy and [ak | the |and | o quaﬁ(yﬁand MRS

2 asr 001000100415t (52 LB 1R |00 [[ompmasto | e conpueto | e feompeto oo guaaneed |

3 -123742 3312200010001 i ot fvay, e o lius quality inthet :way, ‘the qgéliy and oo ‘13‘ 13‘

483 0100011330301 [T ‘the?é;ular stibution shouid 'é\!o ‘;risulré ‘dismbunéishould also ‘;rtéulr; ‘distribunb: should ‘al’s'o |;rtsulv; |13' 13‘
snmie ooriszs000101 (33| BT %S LT 1S e e Loty Jan ths s ansined ||

6 CIS6558 11120201 1111L iy lh]a‘l \?vay, ‘lhe quality of | the qugl\z?: of ?ﬁeﬁ diszribuﬁiw:snoula cor?l‘\’n]ue to |be gJ;FaL?eed.‘

7oaetm n s ‘lhexduih!y and the eguiar |distrbution should ‘cor?(int% Y ‘be guaraneed.

Tightening the Relaxation

» In some cases, the relaxation is not tight, and the algorithm
will not converge to y(i) =1fori=1...N

» Our solution: incrementally add hard constraints until the
relaxation is tight

» Definition: for any set C C {1,2,..., N},

Ve={y:ye), and VieC,y(i) =1}

» We can find

argmas £ (1)
yeY,

using dynamic programming, with a 2/°l increase in the
number of states

» Goal: find a small set C such that Lagrangian relaxation with
Y/, returns an exact solution

An Example Run of the Algorithm

Input German: es bleibt jedoch dabei , dass einlandist , das werden muss
t L(ut~1) yt (i) derivation y*
1 e 0000130334 1100001 [8 IO IO T B0 T O ey T | o | 2 Jooumy e |]
2 sasoir 2240201000100 00n B (G B i [s e 72 catmeia |t oo costmoniarea |72
o o2 bl R 1% ooy tat | st e cose montored | LT
B 0 bl R Sy S cotmia | when | s e closey maniore ||
3oy ornznn b [1% oy e s e cosely montorea |7
s amen o il [% sy et [t |oe ossy moniorea ||
36008 T 00 T g B SR ey [t oo | s | mast oo cossy montarea |
3 A7AR7 Loz nonen%eﬁess, co\?:‘rr?bia loiélo a ‘cou%vﬁha! lribsté beclosely'ri\gnnored 17’.17‘
B nos 2 bl R S [loowmbia | wiv | st oo cossy montored ||
B o |l Sy S cowmbia | wien | s |oe cossy mantorea ||
s o o bRt 1% 1% ooyt st e cossymeniorea ||
O R RR LR RTTRE RRR R -4 il ‘ac?)hatry et ‘colz}nbwa '1ulm|1cf| st |oe closely moritored ‘17’ 17‘
0000000090000000 ::;;:Es')mmlnt'agﬁ]uz(m) = 10; count (i) = 0 for all other i
2 bl [Jacoun tat | st oo cosey maniorea ||

The Algorithm with Constraint Generation

Optimize(C,u)
while (dual value still improving)
y* = argmax,cy, L(u,y)
if y*(i))=1fori=1...N return y*
elsefori=1...N
u(i) = u(i) —a(y"(i) — 1)
count(i) =0fori=1...N
fork=1...K
y* = argmax,cy, L(u,y)
if y*(i))=1fori=1...N return y*
elsefori=1...N
u(i) = u(i) —a(y"(i) — 1)
count(i) = count(i) + [[y*(i) # 1]]
Let C’ = set of G i's that have the largest value for
count(i) and that are not in C
return Optimize(C UC', u)

Number of Constraints Required

cons. 1-10 words 11-20 words | 21-30 words | 31-40 words | 41-50 words All sentences

0-0 183 (98.9 %) | 511 (91.6 %)| 438 (77.4 %) | 222 (64.0 %)| 82 (48.8%)| 1,436 (78.7%)| 78.7%
1-3 2 (1.1%)| 45 (8.1%)| 94 (16.6%)| 87 (25.1%)| 50 (29.8%)| 278 (152%)| 94.0%
4-6 0 (0.0%) 2 (04%)| 27 (48%)| 24 (69%)| 19 (11.3%) 72 (39%)| 979%
7-9 0 (0.0%) 0 (0.0%) 7 (12%)| 13 (37%)]| 12 (7.1 %) 32 (18%)| 99.7%
X 0 (0.0%) 0 (0.0%) 0 (0.0%) 1(03%)| 5 (3.0%) 6 (03%)| 100.0%

Table 2: Table showing the number of constraints added before convergence of the algorithm in Figure 3, broken down by sentence
length. Note that a maximum of 3 constraints are added at each recursive call, but that fewer than 3 constraints are added in cases
where fewer than 3 constraints have count(i) > 0. x indicates the sentences that fail to converge after 250 iterations. 78.7% of the
examples converge without adding any constraints.

Time Required

1-10 words | 11-20 words | 21-30 words | 31-40 words 41-50 words All sentences
A* w/o A* w/o A* wlo A* w/o A* w/o A* w/o
0-0 0.8 0.8 9.7 107 | 470 537 | 153.6 178.6 402.6 4924 | 646 76.1
1-3 2.4 29 (232 280 80.9 102.3 | 2774 360.8 686.0 877.7 | 241.3 309.7
4-6 0.0 0.0 | 282 388 | 111.7 163.7 | 309.5 5752 | 1,552.8 1,709.2 | 555.6 699.5
7-9 0.0 00| 00 0.0 | 166.1 500.4 | 361.0 1,467.6 | 1,167.2 3,222.4 | 620.7 1,914.1
mean | 0.8 09 | 109 123 572 72.6 | 2034 299.2 679.9 9534 | 1209 168.9
median| 0.7 0.7 8.9 9.9 | 483 54.6 | 169.7 202.6 484.0 606.5 352 400

cons.

Table 3: The average time (in seconds) for decoding using the algorithm in Figure 3, with and without A* algorithm, broken down
by sentence length and the number of constraints that are added. A* indicates speeding up using A* search; w/o denotes without
using A*.

Comparison to LP/ILP Decoding

method ILP LP
set | length mean median mean median | % frac.
1-10 2752 1329 10.9 44 | 124 %

1
Y 11-15 2,707.8 1,138.5 177.4 66.1 | 40.8 %
16-20 | 20,583.1 3,692.6 | 1,374.6 637.0 | 59.7 %
YV’ 1-10 2572 1577 18.4 8.9 1.1%
11-15 N/A N/A 476.8 161.1 3.0 %

Table 4: Average and median time of the LP/ILP solver (in
seconds). % frac. indicates how often the LP gives a fractional
answer.)’ indicates the dynamic program using set)’ as de-
fined in Section 4.1, and)" indicates the dynamic program us-
ing states (w1, w2, n, r). The statistics for ILP for length 16-20
is based on 50 sentences.

Number of lterations Required

#iter. | 1-10 words | 11-20 words | 21-30 words | 31-40 words | 41-50 words | All sentences

0-7 166 (89.7%)| 219 (392%)| 34 (60%)| 2 (06%)| 0 (0.0%)| 421 23.1%)| 23.1%
8-15 17 (92%)| 187 (33.5%)| 161 (284 %)| 30 (8.6%)| 3 (1.8%)| 398 21.8%)| 44.9%
16-30 1 (05%)| 93 (167%)| 208 (36.7%)| 112 (32.3%)| 22 (13.1%)| 436 (23.9%)| 68.8%
31-60 1 (05%)| 52 (93%)| 105 (186%)| 99 (28.5%)| 62 (36.9%)| 319 (17.5%)| 86.3 %
61-120 0 (00%)| 7 (13%)| 54 (95%)| 89 (25.6%)| 45 (268%)| 195 (10.7%)| 97.0%

121250 | 0 (00%)| 0 (00%)| 4 (07%)| 14 (40%)| 31 (185%)| 49 (27%)| 99.7%
0(00%]| 0(00%)]| 0(00%)]| 1(03%)]| 5(30%)]| 6 (03%)] 100.0%

X

Table 1: Table showing the number of iterations taken for the algorithm to converge. x indicates sentences that fail to
converge after 250 iterations. 97% of the examples converge within 120 iterations.

Part Il: Discriminative Training for MT

» Our original model:

Fl) = hle(w) + 390 + 3 1 % 5t m), soren)

» A discriminative model for translation (Liang et al., 2006):

fly;w,a,n) = axh(e

Mh

L—1
O(pr)+ > nx8(t(pe), s(Prsn))
k=1 k=1

Here o € R, n € R and w € R? are the parameters of the
model

» Crucial idea: ¢(p) is a feature-vector representation of a
phrase p

The Learning Set-up

» Our training data consists of (z(*), e®) pairs, for i = 1...n,
where z(® is a source language sentence, and e is a target
language sentence

» We use Y@ to denote the set of possible derivations for z(*)

» A complication: for a given (2(V, e() pair, there may be many
derivations y € Y such that e(y) = e®.

“Bold Updating” Algorithm from Liang et al.
» Initialization: set w =0, a =1, n=—1

> fort=1...T,fori=1...n,

> Y= argmaX,cyo.e(y)=e f (YW, @, 1)

> 2* = arg max, (i) f(z;w, «, 77)

» For any phrase p € y*, w = w + ¢(p)
» For any phrase p € 2*, w = w — ¢(p)
» Set a =a+ h(e(y™)) — h(e(z*))

» Setn=n+...—...

“Local Updating” Algorithm from Liang et al.

» Initialization: set w =0, a=1,n= -1
» fort=1...T, fori=1...n,
» Define N to be the k highest scoring translations in)
under f(y;w,a,n) (easy to generate N’ using k-best search)
» y* is member of N that is “closest” to e(?).
2 = argmax, ey £(2 2, 0,7)
» For any phrase p € y*, w = w + ¢(p)
» For any phrase p € 2%, w = w — ¢(p)

» Set a = o+ h(e(y*)) — h(e(z*))

» Setn=n+...—...

