
Lecture 9: Lagrangian Relaxation for

Phrase-based Decoding

Michael Collins (joint work with Yin-Wen Chang)

March 30, 2011

The Phrase-Based Decoding Problem
I We have a source-language sentence x1, x2, . . . , xN

(xi is the i’th word in the sentence)

I A phrase p is a tuple (s, t, e) signifying that words xs . . . xt

have a target-language translation as e

I E.g., p = (2, 5, the dog) specifies that words x2 . . . x5 have a
translation as the dog

I Output from a phrase-based model is a derivation

y = p1p2 . . . pL

where pj for j = 1 . . . L are phrases. A derivation defines a
translation e(y) formed by concatenating the strings

e(p1)e(p2) . . . e(pL)

Scoring Derivations

I Each phrase p has a score g(p).

I For two consecutive phrases pk = (s, t, e) and
pk+1 = (s′, t′, e′), the distortion distance is
δ(t, s′) = |t+ 1− s′|

I The score for a derivation is

f(y) = h(e(y)) +
L∑

k=1

g(pk) +
L−1∑
k=1

η × δ(t(pk), s(pk+1))

where η ∈ R is the distortion penalty, and h(e(y)) is the
language model score

The Decoding Problem

I Y is the set of all valid derivations

I For a derivation y, y(i) is the number of times word i is
translated

I A derivation y = p1, p2, . . . , pL is valid if:

I y(i) = 1 for i = 1 . . . N
I For each pair of consecutive phrases pk, pk+1 for
k = 1 . . . L− 1, we have δ(t(pk), s(pk+1)) ≤ d, where d is the
distortion limit.

I Decoding problem is to find

arg max
y∈Y

f(y)

Exact Dynamic Programming
I We can find

arg max
y∈Y

f(y)

using dynamic programming

I But, the runtime (and number of states) is exponential in N .

I Dynamic programming states are of the form

(w1, w2, b, r)

where

I w1, w2 are last two words of a hypothesis
I b is a bit-string of length N , recording which words have been

translated (2N possibilities)
I r is the end-point of the last phrase in the hypothesis

A Lagrangian Relaxation Algorithm

I Define Y ′ to be the set of derivations such that:

I
∑N

i=1 y(i) = N
I For each pair of consecutive phrases pk, pk+1 for
k = 1 . . . L− 1, we have δ(t(pk), s(pk+1)) ≤ d, where d is the
distortion limit.

I Notes:

I We have dropped the y(i) = 1 constraints.
I We have Y ⊂ Y ′

Dynamic Programming over Y ′

I We can find
arg max

y∈Y ′
f(y)

efficiently, using dynamic programming

I Dynamic programming states are of the form

(w1, w2, n, r)

where

I w1, w2 are last two words of a hypothesis
I n is the length of the partial hypothesis
I r is the end-point of the last phrase in the hypothesis

A Lagrangian Relaxation Algorithm (continued)

I The original decoding problem is

arg max
y∈Y

f(y)

I We can rewrite this as

arg max
y∈Y ′

f(y) such that ∀i, y(i) = 1

I We deal with the y(i) = 1 constraints using Lagrangian
relaxation

A Lagrangian Relaxation Algorithm (continued)

The Lagrangian is

L(u, y) = f(y) +
∑

i

u(i)(y(i)− 1)

The dual objective is then

L(u) = max
y∈Y ′

L(u, y).

and the dual problem is to solve

min
u
L(u).

The Algorithm

Initialization: u0(i)← 0 for i = 1 . . . N
for t = 1 . . . T
yt = argmaxy∈Y ′ L(ut−1, y)
if yt(i) = 1 for i = 1 . . . N

return yt

else

for i = 1 . . . N
ut(i) = ut−1(i)− αt

(
yt(i)− 1

)
Figure: The decoding algorithm. αt > 0 is the step size at the t’th
iteration.

An Example Run of the Algorithm

Input German: dadurch können die qualität und die regelmäßige postzustellung auch weiterhin sichergestellt werden .

t L(ut−1) yt(i) derivation yt

1 -10.0988 0 0 2 2 3 3 0 0 2 0 0 0 1
˛̨̨̨

3, 6
the quality and

˛̨̨̨
9, 9
also

˛̨̨̨
6, 6
the

˛̨̨̨
5, 5
and

˛̨̨̨
3, 3
the

˛̨̨̨
4, 6

quality and

˛̨̨̨
9, 9
also

˛̨̨̨
13, 13

.

˛̨̨̨
2 -11.1597 0 0 1 0 0 0 1 0 0 4 1 5 1

˛̨̨̨
3, 3
the

˛̨̨̨
7, 7

regular

˛̨̨̨
12, 12

will

˛̨̨̨
10, 10

continue to

˛̨̨̨
12, 12

be

˛̨̨̨
10, 10

continue to

˛̨̨̨
12, 12

be

˛̨̨̨
10, 10

continue to

˛̨̨̨
12, 12

be

˛̨̨̨
10, 10

continue to

˛̨̨̨
11, 13

be guaranteed .

˛̨̨̨
3 -12.3742 3 3 1 2 2 0 0 0 1 0 0 0 1

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
5, 5
and

˛̨̨̨
2, 2
can

˛̨̨̨
1, 1
thus

˛̨̨̨
4, 4

quality

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
3, 5

the quality and

˛̨̨̨
9, 9
also

˛̨̨̨
13, 13

.

˛̨̨̨
4 -11.8623 0 1 0 0 0 1 1 3 3 0 3 0 1

˛̨̨̨
2, 2
can

˛̨̨̨
6, 7

the regular

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 9
also

˛̨̨̨
11, 11
ensure

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 9
also

˛̨̨̨
11, 11
ensure

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 9
also

˛̨̨̨
11, 11
ensure

˛̨̨̨
13, 13

.

˛̨̨̨
5 -13.9916 0 0 1 1 3 2 4 0 0 0 1 0 1

˛̨̨̨
3, 3
the

˛̨̨̨
7, 7

regular

˛̨̨̨
5, 5
and

˛̨̨̨
7, 7

regular

˛̨̨̨
5, 5
and

˛̨̨̨
7, 7

regular

˛̨̨̨
6, 6
the

˛̨̨̨
4, 4

quality

˛̨̨̨
5, 7

and the regular

˛̨̨̨
11, 11

ensured

˛̨̨̨
13, 13

.

˛̨̨̨
6 -15.6558 1 1 1 2 0 2 0 1 1 1 1 1 1

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
3, 4

the quality of

˛̨̨̨
6, 6
the

˛̨̨̨
4, 4

quality of

˛̨̨̨
6, 6
the

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 10

continue to

˛̨̨̨
11, 13

be guaranteed .

˛̨̨̨
7 -16.1022 1 1 1 1 1 1 1 1 1 1 1 1 1

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
3, 4

the quality

˛̨̨̨
5, 7

and the regular

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 10

continue to

˛̨̨̨
11, 13

be guaranteed .

˛̨̨̨

Figure 2: An example run of the algorithm in Figure 1. For each value of t we show the dual value L(ut−1), the
derivation yt, and the number of times each word is translated, yt(i) for i = 1 . . . N . For each phrase in a derivation
we show the English string e, together with the span (s, t): for example, the first phrase in the first derivation has
English string the quality and, and span (3, 6). At iteration 7 we have yt(i) = 1 for i = 1 . . . N , and the translation is
returned, with a guarantee that it is optimal.

The dual objective is then

L(u) = max
y∈Y ′

L(u, y).

and the dual problem is to solve

min
u

L(u).

The next section gives a number of formal results de-
scribing how solving the dual problem will be useful
in solving the original optimization problem.

We now describe an algorithm that solves the dual
problem. By standard results for Lagrangian re-
laxation (Korte and Vygen, 2008), L(u) is a con-
vex function; it can be minimized by a subgradient
method. If we define

yu = arg max
y∈Y ′

L(u, y)

and γu(i) = yu(i) − 1 for i = 1 . . . N , then γu is
a subgradient of L(u) at u. A subgradient method
is an iterative method for minimizing L(u), which
perfoms updates ut ← ut−1−αtγut−1 where αt > 0
is the step size for the t’th subgradient step.

Figure 1 depicts the resulting algorithm. At each
iteration, we solve

arg max
y∈Y ′

(
f(y) +

∑
i

u(i)(y(i)− 1)

)

= arg max
y∈Y ′

(
f(y) +

∑
i

u(i)y(i)

)

by the dynamic program described in the previous
section. Incorporating the

∑
i u(i)y(i) terms in the

dynamic program is straightforward: we simply re-
define the phrase scores as

g′(s, t, e) = g(s, t, e) +
t∑

i=s

u(i)

Intuitively, each Lagrange multiplier u(i) penal-
izes or rewards phrases that translate word i; the al-
gorithm attempts to adjust the Lagrange multipliers
in such a way that each word is translated exactly
once. The updates ut(i) = ut−1(i) − αt(yt(i) − 1)
will decrease the value for u(i) if yt(i) > 1, in-
crease the value for u(i) if yt(i) = 0, and leave u(i)
unchanged if yt(i) = 1.

4.3 Properties
We now give some theorems stating formal prop-
erties of the Lagrangian relaxation algorithm. The
proofs are simple, and are given in the supplemental
material for this submission. First, define y∗ to be
the optimal solution for our original problem:

Definition 1. y∗ = arg maxy∈Y f(y)

Our first theorem states that the dual function pro-
vides an upper bound on the score for the optimal
translation, f(y∗):
Theorem 1. For any value of u ∈ RN , L(u) ≥
f(y∗).

The second theorem states that under an appropri-
ate choice of the step sizes αt, the method converges

Tightening the Relaxation
I In some cases, the relaxation is not tight, and the algorithm

will not converge to y(i) = 1 for i = 1 . . . N
I Our solution: incrementally add hard constraints until the

relaxation is tight
I Definition: for any set C ⊆ {1, 2, . . . , N},

Y ′C = {y : y ∈ Y ′, and ∀i ∈ C, y(i) = 1}

I We can find
arg max

y∈Y ′C
f(y)

using dynamic programming, with a 2|C| increase in the
number of states

I Goal: find a small set C such that Lagrangian relaxation with
Y ′C returns an exact solution

An Example Run of the Algorithm

Input German: es bleibt jedoch dabei , dass kolumbien ein land ist , das aufmerksam beobachtet werden muss .

t L(ut−1) yt(i) derivation yt

1 -11.8658 0 0 0 0 1 3 0 3 3 4 1 1 0 0 0 0 1
˛̨̨̨
5, 6
that

˛̨̨̨
10, 10

is

˛̨̨̨
8, 9

a country

˛̨̨̨
6, 6
that

˛̨̨̨
10, 10

is

˛̨̨̨
8, 9

a country

˛̨̨̨
6, 6
that

˛̨̨̨
10, 10

is

˛̨̨̨
8, 8

a

˛̨̨̨
9, 12

country that

˛̨̨̨
17, 17

.

˛̨̨̨
2 -5.46647 2 2 4 0 2 0 1 0 0 0 1 0 1 1 1 1 1

˛̨̨̨
3, 3

however ,

˛̨̨̨
1, 1

it

˛̨̨̨
2, 3

is , however

˛̨̨̨
5, 5

,

˛̨̨̨
3, 3

however ,

˛̨̨̨
1, 1

it

˛̨̨̨
2, 3

is , however

˛̨̨̨
5, 5

,

˛̨̨̨
7, 7

colombia

˛̨̨̨
11, 11

,

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
.
.
.

32 -17.0203 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1
˛̨̨̨

1, 5
nonetheless ,

˛̨̨̨
7, 7

colombia

˛̨̨̨
10, 10

is

˛̨̨̨
8, 8

a

˛̨̨̨
9, 12

country that

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
33 -17.1727 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
6, 6
that

˛̨̨̨
8, 9

a country

˛̨̨̨
6, 6
that

˛̨̨̨
7, 7

colombia

˛̨̨̨
11, 12
, which

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
34 -17.0203 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
7, 7

colombia

˛̨̨̨
10, 10

is

˛̨̨̨
8, 8

a

˛̨̨̨
9, 12

country that

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
35 -17.1631 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
7, 7

colombia

˛̨̨̨
10, 10

is

˛̨̨̨
8, 8

a

˛̨̨̨
9, 12

country that

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
36 -17.0408 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
6, 6
that

˛̨̨̨
8, 9

a country

˛̨̨̨
6, 6
that

˛̨̨̨
7, 7

colombia

˛̨̨̨
11, 12
, which

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
37 -17.1727 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
7, 7

colombia

˛̨̨̨
10, 10

is

˛̨̨̨
8, 8

a

˛̨̨̨
9, 12

country that

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
38 -17.0408 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
6, 6
that

˛̨̨̨
8, 9

a country

˛̨̨̨
6, 6
that

˛̨̨̨
7, 7

colombia

˛̨̨̨
11, 12
, which

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
39 -17.1658 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
6, 6
that

˛̨̨̨
8, 9

a country

˛̨̨̨
6, 6
that

˛̨̨̨
7, 7

colombia

˛̨̨̨
11, 12
, which

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
40 -17.056 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
7, 7

colombia

˛̨̨̨
10, 10

is

˛̨̨̨
8, 8

a

˛̨̨̨
9, 12

country that

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨
41 -17.1732 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

˛̨̨̨
1, 5

nonetheless ,

˛̨̨̨
6, 6
that

˛̨̨̨
8, 9

a country

˛̨̨̨
6, 6
that

˛̨̨̨
7, 7

colombia

˛̨̨̨
11, 12
, which

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨

0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 count(6) = 10; count(10) = 10; count(i) = 0 for all other i
adding constraints: 6 10

42 -17.229 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
˛̨̨̨

1, 5
nonetheless ,

˛̨̨̨
7, 7

colombia

˛̨̨̨
6, 6
that

˛̨̨̨
8, 12

a country that

˛̨̨̨
16, 16
must

˛̨̨̨
13, 15

be closely monitored

˛̨̨̨
17, 17

.

˛̨̨̨

Figure 1: An example run of the algorithm in Figure 3. At iteration 32, we start the K = 10 iterations to count
which constraints are violated most often. After K iterations, the count for 6 and 10 is 10, and all other constraints
have not been violated during the K iterations. Thus, hard constraints for word 6 and 10 are added. After adding the
constraints, we have yt(i) = 1 for i = 1 . . . N , and the translation is returned, with a guarantee that it is optimal.

β∅(s′, u) is much cheaper than calculating βC(s, u)
directly. Guided by β∅(s′, u), βC(s, u) can be calcu-
lated efficiently by using A* search.

Using the A* algorithm leads to significant
improvements in efficiency when constraints are
added. Section 6 presents comparison of the running
time with and without A* algorithm.

D Step Size

Similar to ?), we set the step size at the tth iteration
to be αt = 1/(1 + λt), where λt is the number of
times that L(u(t′) > L(u(t′−1)) for all t′ ≤ t.

The Algorithm with Constraint Generation

Optimize(C, u)
while (dual value still improving)

y∗ = argmaxy∈Y′C L(u, y)
if y∗(i) = 1 for i = 1 . . . N return y∗

else for i = 1 . . . N
u(i) = u(i)− α (y∗(i)− 1)

count(i) = 0 for i = 1 . . . N
for k = 1 . . .K
y∗ = argmaxy∈Y′C L(u, y)
if y∗(i) = 1 for i = 1 . . . N return y∗

else for i = 1 . . . N
u(i) = u(i)− α (y∗(i)− 1)
count(i) = count(i) + [[y∗(i) 6= 1]]

Let C′ = set of G i’s that have the largest value for
count(i) and that are not in C
return Optimize(C ∪ C′, u)

Number of Constraints Required

cons. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-0 183 (98.9 %) 511 (91.6 %) 438 (77.4 %) 222 (64.0 %) 82 (48.8 %) 1,436 (78.7 %) 78.7 %
1-3 2 (1.1 %) 45 (8.1 %) 94 (16.6 %) 87 (25.1 %) 50 (29.8 %) 278 (15.2 %) 94.0 %
4-6 0 (0.0 %) 2 (0.4 %) 27 (4.8 %) 24 (6.9 %) 19 (11.3 %) 72 (3.9 %) 97.9 %
7-9 0 (0.0 %) 0 (0.0 %) 7 (1.2 %) 13 (3.7 %) 12 (7.1 %) 32 (1.8 %) 99.7 %
x 0 (0.0 %) 0 (0.0 %) 0 (0.0 %) 1 (0.3 %) 5 (3.0 %) 6 (0.3 %) 100.0 %

Table 2: Table showing the number of constraints added before convergence of the algorithm in Figure 3, broken down by sentence
length. Note that a maximum of 3 constraints are added at each recursive call, but that fewer than 3 constraints are added in cases
where fewer than 3 constraints have count(i) > 0. x indicates the sentences that fail to converge after 250 iterations. 78.7% of the
examples converge without adding any constraints.

cons.
1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
A* w/o A* w/o A* w/o A* w/o A* w/o A* w/o

0-0 0.8 0.8 9.7 10.7 47.0 53.7 153.6 178.6 402.6 492.4 64.6 76.1
1-3 2.4 2.9 23.2 28.0 80.9 102.3 277.4 360.8 686.0 877.7 241.3 309.7
4-6 0.0 0.0 28.2 38.8 111.7 163.7 309.5 575.2 1,552.8 1,709.2 555.6 699.5
7-9 0.0 0.0 0.0 0.0 166.1 500.4 361.0 1,467.6 1,167.2 3,222.4 620.7 1,914.1
mean 0.8 0.9 10.9 12.3 57.2 72.6 203.4 299.2 679.9 953.4 120.9 168.9
median 0.7 0.7 8.9 9.9 48.3 54.6 169.7 202.6 484.0 606.5 35.2 40.0

Table 3: The average time (in seconds) for decoding using the algorithm in Figure 3, with and without A* algorithm, broken down
by sentence length and the number of constraints that are added. A* indicates speeding up using A* search; w/o denotes without
using A*.

a general purpose integer linear programming (ILP)
solver, which solves the problem exactly.

The experiments focus on translation from Ger-
man to English, using the Europarl data (Koehn,
2005). We tested on 1,824 sentences of length at
most 50 words. The experiments use the algorithm
shown in Figure 3. We limit the algorithm to a max-
imum of 250 iterations and a maximum of 9 hard
constraints. The distortion limit d is set to be four,
and we prune the phrase translation table to have 10
English phrases per German phrase.

Our method finds exact solutions on 1,818 out
of 1,824 sentences (99.67%). (6 examples do not
converge within 250 iterations.) Table 1 shows the
number of iterations required for convergence, and
Table 2 shows the number of constraints required
for convergence, broken down by sentence length.
In 1,436/1,818 (78.7%) sentences, the method con-
verges without adding hard constraints to tighten the
relaxation. For sentences with 1-10 words, the vast
majority (183 out of 185 examples) converge with
0 constraints added. As sentences get longer, more
constraints are often required. However most exam-
ples converge with 9 or fewer constraints.

Table 3 shows the average times for decoding,
broken down by sentence length, and by the number
of constraints that are added. As expected, decod-

ing times increase as the length of sentences, and
the number of constraints required, increase. The
average run time across all sentences is 120.9 sec-
onds. Table 3 also shows the run time of the method
without the A* algorithm for decoding. The A* al-
gorithm gives significant reductions in runtime.

6.1 Comparison to an LP/ILP solver
To compare to a linear programming (LP) or inte-
ger linear programming (ILP) solver, we can im-
plement the dynamic programming part of our al-
gorithm (search over the set Y ′) through linear con-
straints, with a linear objective. The y(i) = 1 con-
straints are also linear. Hence we can encode our
relaxation within an LP or ILP. Having done this,
we tested the resulting LP or ILP using Gurobi, a
high-performance commercial grade solver. We also
compare to an LP or ILP where the dynamic pro-
gram makes use of states (w1, w2, n, r)—i.e., the
span (l,m) is dropped, making the dynamic pro-
gram smaller. Table 4 includes results of the time re-
quired to find a solution on sentences of length 1-15.
Both the LP and the ILP require very long running
times on these shorter sentences, and running times
on longer sentences are prohibitive. Our algorithm
is more efficient because it leverages the structure of
the problem, by directly using a combinatorial algo-
rithm (dynamic programming).

Time Required

cons. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-0 183 (98.9 %) 511 (91.6 %) 438 (77.4 %) 222 (64.0 %) 82 (48.8 %) 1,436 (78.7 %) 78.7 %
1-3 2 (1.1 %) 45 (8.1 %) 94 (16.6 %) 87 (25.1 %) 50 (29.8 %) 278 (15.2 %) 94.0 %
4-6 0 (0.0 %) 2 (0.4 %) 27 (4.8 %) 24 (6.9 %) 19 (11.3 %) 72 (3.9 %) 97.9 %
7-9 0 (0.0 %) 0 (0.0 %) 7 (1.2 %) 13 (3.7 %) 12 (7.1 %) 32 (1.8 %) 99.7 %
x 0 (0.0 %) 0 (0.0 %) 0 (0.0 %) 1 (0.3 %) 5 (3.0 %) 6 (0.3 %) 100.0 %

Table 2: Table showing the number of constraints added before convergence of the algorithm in Figure 3, broken down by sentence
length. Note that a maximum of 3 constraints are added at each recursive call, but that fewer than 3 constraints are added in cases
where fewer than 3 constraints have count(i) > 0. x indicates the sentences that fail to converge after 250 iterations. 78.7% of the
examples converge without adding any constraints.

cons.
1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
A* w/o A* w/o A* w/o A* w/o A* w/o A* w/o

0-0 0.8 0.8 9.7 10.7 47.0 53.7 153.6 178.6 402.6 492.4 64.6 76.1
1-3 2.4 2.9 23.2 28.0 80.9 102.3 277.4 360.8 686.0 877.7 241.3 309.7
4-6 0.0 0.0 28.2 38.8 111.7 163.7 309.5 575.2 1,552.8 1,709.2 555.6 699.5
7-9 0.0 0.0 0.0 0.0 166.1 500.4 361.0 1,467.6 1,167.2 3,222.4 620.7 1,914.1
mean 0.8 0.9 10.9 12.3 57.2 72.6 203.4 299.2 679.9 953.4 120.9 168.9
median 0.7 0.7 8.9 9.9 48.3 54.6 169.7 202.6 484.0 606.5 35.2 40.0

Table 3: The average time (in seconds) for decoding using the algorithm in Figure 3, with and without A* algorithm, broken down
by sentence length and the number of constraints that are added. A* indicates speeding up using A* search; w/o denotes without
using A*.

a general purpose integer linear programming (ILP)
solver, which solves the problem exactly.

The experiments focus on translation from Ger-
man to English, using the Europarl data (Koehn,
2005). We tested on 1,824 sentences of length at
most 50 words. The experiments use the algorithm
shown in Figure 3. We limit the algorithm to a max-
imum of 250 iterations and a maximum of 9 hard
constraints. The distortion limit d is set to be four,
and we prune the phrase translation table to have 10
English phrases per German phrase.

Our method finds exact solutions on 1,818 out
of 1,824 sentences (99.67%). (6 examples do not
converge within 250 iterations.) Table 1 shows the
number of iterations required for convergence, and
Table 2 shows the number of constraints required
for convergence, broken down by sentence length.
In 1,436/1,818 (78.7%) sentences, the method con-
verges without adding hard constraints to tighten the
relaxation. For sentences with 1-10 words, the vast
majority (183 out of 185 examples) converge with
0 constraints added. As sentences get longer, more
constraints are often required. However most exam-
ples converge with 9 or fewer constraints.

Table 3 shows the average times for decoding,
broken down by sentence length, and by the number
of constraints that are added. As expected, decod-

ing times increase as the length of sentences, and
the number of constraints required, increase. The
average run time across all sentences is 120.9 sec-
onds. Table 3 also shows the run time of the method
without the A* algorithm for decoding. The A* al-
gorithm gives significant reductions in runtime.

6.1 Comparison to an LP/ILP solver
To compare to a linear programming (LP) or inte-
ger linear programming (ILP) solver, we can im-
plement the dynamic programming part of our al-
gorithm (search over the set Y ′) through linear con-
straints, with a linear objective. The y(i) = 1 con-
straints are also linear. Hence we can encode our
relaxation within an LP or ILP. Having done this,
we tested the resulting LP or ILP using Gurobi, a
high-performance commercial grade solver. We also
compare to an LP or ILP where the dynamic pro-
gram makes use of states (w1, w2, n, r)—i.e., the
span (l,m) is dropped, making the dynamic pro-
gram smaller. Table 4 includes results of the time re-
quired to find a solution on sentences of length 1-15.
Both the LP and the ILP require very long running
times on these shorter sentences, and running times
on longer sentences are prohibitive. Our algorithm
is more efficient because it leverages the structure of
the problem, by directly using a combinatorial algo-
rithm (dynamic programming).

Comparison to LP/ILP Decoding

method ILP LP
set length mean median mean median % frac.

Y ′′ 1-10 275.2 132.9 10.9 4.4 12.4 %
11-15 2,707.8 1,138.5 177.4 66.1 40.8 %
16-20 20,583.1 3,692.6 1,374.6 637.0 59.7 %

Y ′ 1-10 257.2 157.7 18.4 8.9 1.1 %
11-15 N/A N/A 476.8 161.1 3.0 %

Table 4: Average and median time of the LP/ILP solver (in
seconds). % frac. indicates how often the LP gives a fractional
answer. Y ′ indicates the dynamic program using set Y ′ as de-
fined in Section 4.1, and Y ′′ indicates the dynamic program us-
ing states (w1, w2, n, r). The statistics for ILP for length 16-20
is based on 50 sentences.

6.2 Comparison to MOSES
We now describe comparisons to the phrase-based
decoder implemented in MOSES. MOSES uses
beam search to find approximate solutions.

The distortion limit described in section 3 is the
same as that in Koehn et al. (2003), and is the same
as that described in the user manual for MOSES
(Koehn et al., 2007). However, a complicating fac-
tor for our comparisons is that MOSES uses an ad-
ditional distortion constraint, not documented in the
manual, which we describe here.4 We call this con-
straint the gap constraint. We will show in experi-
ments that without the gap constraint, MOSES fails
to produce translations on many examples. In our
experiments we will compare to MOSES both with
and without the gap constraint (in the latter case, we
discard examples where MOSES fails).

We now describe the gap constraint. For a se-
quence of phrases p1, . . . , pk define θ(p1 . . . pk) to
be the index of the left-most source-language word
not translated in this sequence. For example, if
the bit-string for p1 . . . pk is 111001101000, then
θ(p1 . . . pk) = 4. A sequence of phrases p1 . . . pL

satisfies the gap constraint if and only if for k =
2 . . . L, |t(pk) + 1 − θ(p1 . . . pk)| ≤ d. where d is
the distortion limit. We will call MOSES without
this restriction MOSES-nogc, and MOSES with this
restriction MOSES-gc.

Results for MOSES-nogc Table 5 shows the
number of examples where MOSES-nogc fails to
give a translation, and the number of search errors
for those cases where it does give a translation, for
a range of beam sizes. A search error is defined as a
case where our algorithm produces an exact solution

4Personal communication from Philipp Koehn; see also the
software for MOSES.

Beam size Fails # search errors percentage
100 650/1,818 214/1,168 18.32 %
200 531/1,818 207/1,287 16.08 %

1000 342/1,818 115/1,476 7.79 %
10000 169/1,818 68/1,649 4.12 %

Table 5: Table showing the number of examples where
MOSES-nogc fails to give a translation, and the num-
ber/percentage of search errors for cases where it does give a
translation.

Diff. MOSES-gc MOSES-gc MOSES-nogc
s =100 s =200 s=1000

0.000 – 0.125 66 (24.26%) 65 (24.07%) 32 (27.83%)
0.125 – 0.250 59 (21.69%) 58 (21.48%) 25 (21.74%)
0.250 – 0.500 65 (23.90%) 65 (24.07%) 25 (21.74%)
0.500 – 1.000 49 (18.01%) 49 (18.15%) 23 (20.00%)
1.000 – 2.000 31 (11.40%) 31 (11.48%) 5 (4.35%)
2.000 – 4.000 2 (0.74%) 2 (0.74%) 3 (2.61%)
4.000 –13.000 0 (0.00%) 0 (0.00%) 2 (1.74%)

Table 6: Table showing statistics for the difference between the
translation score from MOSES, and from the optimal deriva-
tion, for those sentences where a search error is made. For
MOSES-gc we include cases where the translation produced by
our system is not reachable by MOSES-gc. The average score
of the optimal derivations is -62.43.

that has higher score than the output from MOSES-
nogc. The number of search errors is significant,
even for large beam sizes.

Results for MOSES-gc MOSES-gc uses the gap
constraint, and thus in some cases our decoder will
produce derivations which MOSES-gc cannot reach.
Among the 1,818 sentences where we produce a so-
lution, there are 270 such derivations. For the re-
maining 1,548 sentences, MOSES-gc makes search
errors on 2 sentences (0.13%) when the beam size is
100, and no search errors when the beam size is 200,
1,000, or 10,000.

Finally, table 6 shows statistics for the magnitude
of the search errors that MOSES-gc and MOSES-
nogc make.

7 Conclusions
We have described an exact decoding algorithm for
phrase-based translation models, using Lagrangian
relaxation. The algorithmic construction we have
described may also be useful in other areas of NLP,
for example natural language generation. Possi-
ble extensions to the approach include methods that
incorporate the Lagrangian relaxation formulation
within learning algorithms for statistical MT: we see
this as an interesting avenue for future research.

Number of Iterations Required

iter. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-7 166 (89.7 %) 219 (39.2 %) 34 (6.0 %) 2 (0.6 %) 0 (0.0 %) 421 (23.1 %) 23.1 %
8-15 17 (9.2 %) 187 (33.5 %) 161 (28.4 %) 30 (8.6 %) 3 (1.8 %) 398 (21.8 %) 44.9 %
16-30 1 (0.5 %) 93 (16.7 %) 208 (36.7 %) 112 (32.3 %) 22 (13.1 %) 436 (23.9 %) 68.8 %
31-60 1 (0.5 %) 52 (9.3 %) 105 (18.6 %) 99 (28.5 %) 62 (36.9 %) 319 (17.5 %) 86.3 %
61-120 0 (0.0 %) 7 (1.3 %) 54 (9.5 %) 89 (25.6 %) 45 (26.8 %) 195 (10.7 %) 97.0 %
121-250 0 (0.0 %) 0 (0.0 %) 4 (0.7 %) 14 (4.0 %) 31 (18.5 %) 49 (2.7 %) 99.7 %
x 0 (0.0 %) 0 (0.0 %) 0 (0.0 %) 1 (0.3 %) 5 (3.0 %) 6 (0.3 %) 100.0 %

Table 1: Table showing the number of iterations taken for the algorithm to converge. x indicates sentences that fail to
converge after 250 iterations. 97% of the examples converge within 120 iterations.

have or haven’t been translated in a hypothesis (par-
tial derivation). Note that if C = {1 . . . N}, we have
Y ′
C = Y , and the dynamic program will correspond

to exhaustive dynamic programming.

We can again run a Lagrangian relaxation algo-
rithm, using the set Y ′

C in place of Y ′. We will use
Lagrange multipliers u(i) to enforce the constraints
y(i) = 1 for i /∈ C. Our goal will be to find a
small set of constraints C, such that Lagrangian re-
laxation will successfully recover an optimal solu-
tion. We will do this by incrementally adding el-
ements to C; that is, by incrementally adding con-
straints that tighten the relaxation.

The intuition behind our approach is as follows.
Say we run the original algorithm, with the set Y ′,
for several iterations, so that L(u) is close to con-
vergence (i.e., L(u) is close to its minimal value).
However, assume that we have not yet generated a
solution yt such that yt(i) = 1 for all i. In this case
we have some evidence that the relaxation may not
be tight, and that we need to add some constraints.
The question is, which constraints to add? To an-
swer this question, we run the subgradient algorithm
for K more iterations (e.g., K = 10), and at each it-
eration track which constraints of the form y(i) = 1
are violated. We then choose C to be the G con-
straints (e.g., G = 3) that are violated most often
during the K additional iterations, and are not ad-
jacent to each other. We recursively call the algo-
rithm, replacing Y ′ by Y ′

C ; the recursive call may
then return an exact solution, or alternatively again
add more constraints and make a recursive call.

Figure 3 depicts the resulting algorithm. We ini-
tially make a call to the algorithm Optimize(C, u)
with C equal to the empty set (i.e., no hard con-
straints), and with u(i) = 0 for all i. In an initial
phase the algorithm runs subgradient steps, while

the dual is still improving. In a second step, if a so-
lution has not been found, the algorithm runs for K
more iterations, thereby choosing G additional con-
straints, then recursing.

If at any stage the algorithm finds a solution y∗

such that y∗(i) = 1 for all i, then this is the so-
lution to our original problem, arg maxy∈Y f(y).
This follows because for any C ⊆ {1 . . . N} we
have Y ⊆ Y ′

C ; hence the theorems in section 4.3 go
through for Y ′

C in place of Y ′, with trivial modifica-
tions. Note also that the algorithm is guaranteed to
eventually find the optimal solution, because even-
tually C = {1 . . . N}, and Y = Y ′

C .
The remaining question concerns the “dual still

improving” condition; i.e., how to determine that the
first phase of the algorithm should terminate. We do
this by recording the first and second best dual val-
ues L(u′) and L(u′′) in the sequence of Lagrange
multipliers u1, u2, . . . generated by the algorithm.
Suppose that L(u′′) first occurs at iteration t′′. If
L(u′)−L(u′′)

t−t′′ < ε, we say that the dual value does not
decrease enough. The value for ε is a parameter of
the approach: in experiments we used ε = 0.002.

See the supplementary material for this submis-
sion for an example run of the algorithm.

When C #= ∅, A* search can be used for de-
coding, with the dynamic program for Y ′ provid-
ing admissible estimates for the dynamic program
for Y ′

C . Experiments show that A* gives significant
improvements in efficiency. The supplementary ma-
terial contains a full description of the A* algorithm.

6 Experiments

In this section, we present experimental results to
demonstrate the efficiency of the decoding algo-
rithm. We compare to MOSES (Koehn et al., 2007),
a phrase-based decoder using beam search, and to

Part II: Discriminative Training for MT

I Our original model:

f(y) = h(e(y)) +
L∑

k=1

g(pk) +
L−1∑
k=1

η × δ(t(pk), s(pk+1))

I A discriminative model for translation (Liang et al., 2006):

f(y;w, α, η) = α×h(e(y))+
L∑

k=1

w·φ(pk)+
L−1∑
k=1

η×δ(t(pk), s(pk+1))

Here α ∈ R, η ∈ R and w ∈ Rd are the parameters of the
model

I Crucial idea: φ(p) is a feature-vector representation of a
phrase p

The Learning Set-up

I Our training data consists of (x(i), e(i)) pairs, for i = 1 . . . n,
where x(i) is a source language sentence, and e(i) is a target
language sentence

I We use Y(i) to denote the set of possible derivations for x(i)

I A complication: for a given (x(i), e(i)) pair, there may be many
derivations y ∈ Y(i) such that e(y) = e(i).

A “Bold Updating” Algorithm from Liang et al.

I Initialization: set w = 0, α = 1, η = −1

I for t = 1 . . . T , for i = 1 . . . n,

I y∗ = arg maxy∈Y(i):e(y)=e(i) f(y;w,α, η)

I z∗ = arg maxz∈Y(i) f(z;w,α, η)

I For any phrase p ∈ y∗, w = w + φ(p)

I For any phrase p ∈ z∗, w = w − φ(p)

I Set α = α+ h(e(y∗))− h(e(z∗))

I Set η = η + . . .− . . .

A “Local Updating” Algorithm from Liang et al.
I Initialization: set w = 0, α = 1, η = −1

I for t = 1 . . . T , for i = 1 . . . n,
I Define N i to be the k highest scoring translations in Y(i)

under f(y;w,α, η) (easy to generate N i using k-best search)

I y∗ is member of N i that is “closest” to e(i).

I z∗ = arg maxz∈Y(i) f(z;w,α, η)

I For any phrase p ∈ y∗, w = w + φ(p)

I For any phrase p ∈ z∗, w = w − φ(p)

I Set α = α+ h(e(y∗))− h(e(z∗))

I Set η = η + . . .− . . .

