
Lecture 1: COMS E6998-3, Spring 2011

Log-Linear Models

Michael Collins

The Language Modeling Problem

• wi is the i’th word in a document

• Estimate a distribution P (wi|w1, w2, . . . wi−1) given previous
“history” w1, . . . , wi−1.

• E.g., w1, . . . , wi−1 =

Third, the notion “grammatical in English” cannot be

identified in any way with the notion “high order of

statistical approximation to English”. It is fair to assume

that neither sentence (1) nor (2) (nor indeed any part

of these sentences) has ever occurred in an English

discourse. Hence, in any statistical

A Second Example: Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall

Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V

forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N

Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun

V = Verb

P = Preposition

Adv = Adverb

Adj = Adjective

. . .

A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT

important/JJ base/?? from which Spain expanded

its empire into the rest of the Western Hemisphere .

• There are many possible tags in the position ??
{NN, NNS, Vt, Vi, IN, DT, . . .}

• The task: model the distribution

P (ti|t1, . . . , ti−1, w1 . . . wn)

where ti is the i’th tag in the sequence, wi is the i’th word



A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from

which Spain expanded its empire into the rest of the Western Hemisphere .

• The task: model the distribution

P (ti|t1, . . . , ti−1, w1 . . . wn)

where ti is the i’th tag in the sequence, wi is the i’th word

•Many “features” of t1, . . . , ti−1, w1 . . . wn may be relevant

P (ti = NN | wi = base)

P (ti = NN | ti−1 is JJ)

P (ti = NN | wi ends in “e”)

P (ti = NN | wi ends in “se”)

P (ti = NN | wi−1 is “important”)

P (ti = NN | wi+1 is “from”)

The General Problem

• We have some input domain X

• Have a finite label set Y

• Aim is to provide a conditional probability P (y | x)
for any x, y where x ∈ X , y ∈ Y

Language Modeling

• x is a “history” w1, w2, . . . wi−1, e.g.,

Third, the notion “grammatical in English” cannot be identified in any way

with the notion “high order of statistical approximation to English”. It

is fair to assume that neither sentence (1) nor (2) (nor indeed any part of

these sentences) has ever occurred in an English discourse. Hence, in any

statistical

• y is an “outcome” wi

Feature Vector Representations

• Aim is to provide a conditional probability P (y | x) for
“decision” y given “history” x

• A feature is a function φ(x, y) ∈ R

(Often binary features or indicator functions φ(x, y) ∈ {0, 1}).

• Say we havem features φk for k = 1 . . .m

⇒ A feature vector "φ(x, y) ∈ R
m for any x, y



Language Modeling

• x is a “history” w1, w2, . . . wi−1, e.g.,

Third, the notion “grammatical in English” cannot be identified in any way

with the notion “high order of statistical approximation to English”. It

is fair to assume that neither sentence (1) nor (2) (nor indeed any part of

these sentences) has ever occurred in an English discourse. Hence, in any

statistical

• y is an “outcome” wi

• Example features:

φ1(x, y) =

{

1 if y = model
0 otherwise

φ2(x, y) =

{

1 if y = model and wi−1 = statistical

0 otherwise

φ3(x, y) =

{

1 if y = model, wi−2 = any, wi−1 = statistical

0 otherwise

φ4(x, y) =

{

1 if y = model, wi−2 = any

0 otherwise

φ5(x, y) =

{

1 if y = model, wi−1 is an adjective

0 otherwise

φ6(x, y) =

{

1 if y = model, wi−1 ends in “ical”

0 otherwise

φ7(x, y) =

{

1 if y = model, author = Chomsky
0 otherwise

φ8(x, y) =

{

1 if y = model, “model” is not in w1, . . . wi−1

0 otherwise

φ9(x, y) =

{

1 if y = model, “grammatical” is in w1, . . . wi−1

0 otherwise

Defining Features in Practice

• We had the following “trigram” feature:

φ3(x, y) =

{

1 if y = model, wi−2 = any, wi−1 = statistical

0 otherwise

• In practice, we would probably introduce one trigram feature
for every trigram seen in the training data: i.e., for all trigrams

(u, v, w) seen in training data, create a feature

φN(u,v,w)(x, y) =

{

1 if y = w, wi−2 = u, wi−1 = v
0 otherwise

where N(u, v, w) is a function that maps each (u, v, w)
trigram to a different integer



The POS-Tagging Example

• Each x is a “history” of the form 〈t1, t2, . . . , ti−1, w1 . . . wn, i〉

• Each y is a POS tag, such as NN, NNS, V t, V i, IN, DT, . . .

• We havem features φk(x, y) for k = 1 . . .m

For example:

φ1(x, y) =

{

1 if current word wi is base and y = Vt
0 otherwise

φ2(x, y) =

{

1 if current word wi ends in ing and y = VBG
0 otherwise

. . .

The Full Set of Features in [Ratnaparkhi 96]

• Word/tag features for all word/tag pairs, e.g.,

φ100(x, y) =

{

1 if current word wi is base and y = Vt
0 otherwise

• Spelling features for all prefixes/suffixes of length ≤ 4, e.g.,

φ101(x, y) =

{

1 if current word wi ends in ing and y = VBG
0 otherwise

φ102(h, t) =

{

1 if current word wi starts with pre and y = NN
0 otherwise

The Full Set of Features in [Ratnaparkhi 96]

• Contextual Features, e.g.,

φ103(x, y) =

{

1 if 〈ti−2, ti−1, y〉 = 〈DT, JJ, Vt〉
0 otherwise

φ104(x, y) =

{

1 if 〈ti−1, y〉 = 〈JJ, Vt〉
0 otherwise

φ105(x, y) =

{

1 if 〈y〉 = 〈Vt〉
0 otherwise

φ106(x, y) =

{

1 if previous word wi−1 = the and y = Vt

0 otherwise

φ107(x, y) =

{

1 if next word wi+1 = the and y = Vt

0 otherwise

The Final Result

• We can come up with practically any questions (features)
regarding history/tag pairs.

• For a given history x ∈ X , each label in Y is mapped to a

different feature vector

"φ(〈JJ, DT, 〈 Hispaniola, . . . 〉, 6〉,Vt) = 1001011001001100110
"φ(〈JJ, DT, 〈 Hispaniola, . . . 〉, 6〉, JJ) = 0110010101011110010

"φ(〈JJ, DT, 〈 Hispaniola, . . . 〉, 6〉,NN) = 0001111101001100100
"φ(〈JJ, DT, 〈 Hispaniola, . . . 〉, 6〉, IN) = 0001011011000000010

. . .



Parameter Vectors

• Given features φk(x, y) for k = 1 . . .m,
also define a parameter vector "w ∈ R

m

• Each (x, y) pair is then mapped to a “score”

∑

k

wkφk(x, y)

Language Modeling

• x is a “history” w1, w2, . . . wi−1, e.g.,

Third, the notion “grammatical in English” cannot be identified in any way

with the notion “high order of statistical approximation to English”. It

is fair to assume that neither sentence (1) nor (2) (nor indeed any part of

these sentences) has ever occurred in an English discourse. Hence, in any

statistical

• Each possible y gets a different score:

∑

k

wkφk(x, model) = 5.6
∑

k

wkφk(x, the) = −3.2

∑

k

wkφk(x, is) = 1.5
∑

k

wkφk(x, of) = 1.3

∑

k

wkφk(x, models) = 4.5 . . .

Log-Linear Models

• We have some input domain X , and a finite label set Y . Aim
is to provide a conditional probability P (y | x) for any x ∈ X
and y ∈ Y .

• A feature is a function φ : X × Y → R

(Often binary features or indicator functions φ : X × Y → {0, 1}).

• Say we havem features φk for k = 1 . . .m

⇒ A feature vector "φ(x, y) ∈ R
m for any x ∈ X and y ∈ Y .

• We also have a parameter vector "w ∈ R
m

• We define

P (y | x, "w) =
exp{∑

k wkφk(x, y)}
∑

y′∈Y exp{∑

k wkφk(x, y′)}



More About Log-Linear Models

• Why the name?

log P (y | x, "w) = "w · φ(x, y)
︸ ︷︷ ︸

Linear term

− log
∑

y′∈Y

e!w·φ(x,y′)

︸ ︷︷ ︸

Normalization term

• Maximum-likelihood estimates given training sample (xi, yi)
for i = 1 . . . n, each (xi, yi) ∈ X × Y:

"wML = argmax!w∈R
mL("w)

where

L("w) =
n

∑

i=1

log P (yi | xi)

=
n

∑

i=1

"w · φ(xi, yi) −
n

∑

i=1

log
∑

y′∈Y

e!w·φ(xi,y
′)

Calculating the Maximum-Likelihood Estimates

• Need to maximize:

L("w) =
n

∑

i=1

"w · φ(xi, yi) −
n

∑

i=1

log
∑

y′∈Y

e!w·φ(xi,y
′)

• Calculating gradients:

dL

d"w

∣
∣
∣
∣
!w

=
n

∑

i=1

φ(xi, yi) −
n

∑

i=1

∑

y′∈Y φ(xi, y
′)e!w·φ(xi,y

′)

∑

z′∈Y e!w·φ(xi,z′)

=
n

∑

i=1

φ(xi, yi) −
n

∑

i=1

∑

y′∈Y

φ(xi, y
′)

e!w·φ(xi,y
′)

∑

z′∈Y e!w·φ(xi,z′)

=
n

∑

i=1

φ(xi, yi)

︸ ︷︷ ︸

Empirical counts

−
n

∑

i=1

∑

y′∈Y

φ(xi, y
′)P (y′ | xi, "w)

︸ ︷︷ ︸

Expected counts

Gradient Ascent Methods

• Need to maximize L("w) where

dL

d"w

∣
∣
∣
∣
∣
!w

=
n

∑

i=1

φ(xi, yi) −
n

∑

i=1

∑

y′∈Y

φ(xi, y
′)P (y′ | xi, "w)

Initialization: "w = 0

Iterate until convergence:

• Calculate ∆ = dL
d!w

∣
∣
∣
!w

• Calculate β∗ = argmaxβL("w + β∆) (Line Search)

• Set "w ← "w + β∗∆

Conjugate Gradient Methods

• (Vanilla) gradient ascent can be very slow

• Conjugate gradient methods require calculation of gradient at
each iteration, but do a line search in a direction which is

a function of the current gradient, and the previous step

taken.

• Conjugate gradient packages are widely available
In general: they require a function

calc gradient("w) →

(

L("w),
dL

d"w

∣
∣
∣
∣
∣
!w

)

and that’s about it!



Overview

• Log-linear models

• Smoothing, feature selection etc. in log-linear models

Smoothing in Maximum Entropy Models

• Say we have a feature:

φ100(h, t) =

{

1 if current word wi is base and t = Vt
0 otherwise

• In training data, base is seen 3 times, with Vt every time

• Maximum likelihood solution satisfies
∑

i

φ100(xi, yi) =
∑

i

∑

y

p(y | xi, "w)φ100(xi, y)

⇒ p(Vt | xi, "w) = 1 for any history xi where wi = base

⇒ w100 → ∞ at maximum-likelihood solution (most likely)

⇒ p(Vt | x, "w) = 1 for any test data history x where w = base

A Simple Approach: Count Cut-Offs

• [Ratnaparkhi 1998] (PhD thesis): include all features that

occur 5 times or more in training data. i.e.,
∑

i

φk(xi, yi) ≥ 5

for all features φk.

Gaussian Priors

• Modified loss function

L("w) =
n

∑

i=1

"w · φ(xi, yi) −
n

∑

i=1

log
∑

y′∈Y

e!w·φ(xi,y
′) −

m
∑

k=1

wk
2

2σ2

• Calculating gradients:

dL

d"w

∣
∣
∣
∣
!w

=
n

∑

i=1

φ(xi, yi)

︸ ︷︷ ︸

Empirical counts

−
n

∑

i=1

∑

y′∈Y

φ(xi, y
′)P (y′ | xi, "w)

︸ ︷︷ ︸

Expected counts

−
1

σ2
"w

• Can run conjugate gradient methods as before

• Adds a penalty for large weights



References
[Altun, Tsochantaridis, and Hofmann, 2003] Altun, Y., I. Tsochantaridis, and T. Hofmann. 2003. Hidden Markov Support Vector Machines. In Proceedings of

ICML 2003.

[Bartlett 1998] P. L. Bartlett. 1998. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size

of the network, IEEE Transactions on Information Theory, 44(2): 525-536, 1998.

[Bod 98] Bod, R. (1998). Beyond Grammar: An Experience-Based Theory of Language. CSLI Publications/Cambridge University Press.

[Booth and Thompson 73] Booth, T., and Thompson, R. 1973. Applying probability measures to abstract languages. IEEE Transactions on Computers, C-22(5),

pages 442–450.

[Borthwick et. al 98] Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. (1998). Exploiting Diverse Knowledge Sources via Maximum Entropy in

Named Entity Recognition. Proc. of the Sixth Workshop on Very Large Corpora.

[Collins and Duffy 2001] Collins, M. and Duffy, N. (2001). Convolution Kernels for Natural Language. In Proceedings of NIPS 14.

[Collins and Duffy 2002] Collins, M. and Duffy, N. (2002). New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted

Perceptron. In Proceedings of ACL 2002.

[Collins 2002a] Collins, M. (2002a). Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with the Perceptron Algorithm. In

Proceedings of EMNLP 2002.

[Collins 2002b] Collins, M. (2002b). Parameter Estimation for Statistical Parsing Models: Theory and Practice of Distribution-Free Methods. To appear as a

book chapter.

[Crammer and Singer 2001a] Crammer, K., and Singer, Y. 2001a. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. In Journal

of Machine Learning Research, 2(Dec):265-292.

[Crammer and Singer 2001b] Koby Crammer and Yoram Singer. 2001b. Ultraconservative Online Algorithms for Multiclass Problems In Proceedings of COLT

2001.

[Freund and Schapire 99] Freund, Y. and Schapire, R. (1999). Large Margin Classification using the Perceptron Algorithm. In Machine Learning, 37(3):277–

296.

[Helmbold and Warmuth 95] Helmbold, D., and Warmuth, M. On Weak Learning. Journal of Computer and System Sciences, 50(3):551-573, June 1995.

[Hopcroft and Ullman 1979] Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to automata theory, languages, and computation. Reading, Mass.: Addison–

Wesley.

[Johnson et. al 1999] Johnson, M., Geman, S., Canon, S., Chi, S., & Riezler, S. (1999). Estimators for stochastic ‘unification-based” grammars. In Proceedings

of the 37th Annual Meeting of the Association for Computational Linguistics. San Francisco: Morgan Kaufmann.

[Lafferty et al. 2001] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling

sequence data. In Proceedings of ICML-01, pages 282-289, 2001.

[Littlestone and Warmuth, 1986] Littlestone, N., and Warmuth, M. 1986. Relating data compression and learnability. Technical report, University of California,

Santa Cruz.

[MSM93] Marcus, M., Santorini, B., &Marcinkiewicz, M. (1993). Building a large annotated corpus of english: The Penn treebank. Computational Linguistics,

19, 313-330.

[McCallum et al. 2000] McCallum, A., Freitag, D., and Pereira, F. (2000) Maximum entropy markov models for information extraction and segmentation. In

Proceedings of ICML 2000.

[Miller et. al 2000] Miller, S., Fox, H., Ramshaw, L., and Weischedel, R. 2000. A Novel Use of Statistical Parsing to Extract Information from Text. In

Proceedings of ANLP 2000.

[Ramshaw and Marcus 95] Ramshaw, L., and Marcus, M. P. (1995). Text Chunking Using Transformation-Based Learning. In Proceedings of the Third ACL

Workshop on Very Large Corpora, Association for Computational Linguistics, 1995.

[Ratnaparkhi 96] A maximum entropy part-of-speech tagger. In Proceedings of the empirical methods in natural language processing conference.

[Schapire et al., 1998] Schapire R., Freund Y., Bartlett P. and Lee W. S. 1998. Boosting the margin: A new explanation for the effectiveness of voting methods.

The Annals of Statistics, 26(5):1651-1686.

[Zhang, 2002] Zhang, T. 2002. Covering Number Bounds of Certain Regularized Linear Function Classes. In Journal of Machine Learning Research,

2(Mar):527-550, 2002.


