A Machine-Learning Example:
Hand-Written Digit Recognition

» The problem: given a hand-written digit, decide whether it is
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» A learning approach:

Michael Collins 1. Collect several hundred/thousand example digits, and label
them by hand to form a training set
2. Automatically learn a digit recognition model from the

January 19, 2011 training set
3. Apply the model to new, previously unseen hand-written digits

» Systems built in this way are in widespread use in the U.S.
postal service (ZIP-code recognition), and in automatic
check-reading

Today's Lecture Related Problems

» Introduction:

v

Identifying faces within an image

» Example problems from machine learning for NLP (see the Viola and Jones face detector)

» Topics we'll cover in the course
» Background required for the course
» Projects/homework assignments

v

Text classification/spam filtering

v

» Topic 1: Hidden Markov models Medical applications: e.g., classification of cancer type

v

Information retrieval: e.g., ranking web-pages in order of

» Topic 2: Log-linear models .
relevance to a given query




Supervised Learning Problems
» Goal: Learn a function f: X — Y

» We have n training examples

{(1’1, yl)? (x27 y2)7 SRR (l’n, yn)}

where each z; € X, and each y; € J
» Often (not always) X = R? for some integer d

» Some possibilities for V:

» Y ={-1,41} (binary classification)
» Y ={1,2,...,k} for some k > 2 (multi-class classification)
» Y =R (regression)

Context-Free Parsing

» The task: learn a function that maps a sentence, e.g.,
the dog saw the cat

to a parse tree,
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Sequence Labeling Problems

» Task: learn a function that maps an input sequence
T1,T2y. .., Ty
to an output sequence

Y192, - Ym

Note: each y; € ); where ) is a finite set of possible labels
at the i'th position

» This is a core problem in natural language processing

» Examples: part-of-speech tagging, named-entity recognition

Dependency Parsing

» The task: learn a function that maps a sentence, e.g.,
John saw a movie that he liked today

to a dependency structure,

AR

* John saw a  movie that he liked today




Machine Translation

» The task: learn a function that maps a sentence in one
language, e.g.,

In wenigen Tagen finden Parlamentswahlen in Slowenian statt

to a sentence in another language,

In a few days elections take place in Slovenia

Topics Covered in the Class

» Probabilistic models for structured NLP data

» e.g., hidden Markov models (HMMs), maximum-entropy
Markov models (MEMMs), conditional random fields (CRFs),
probabilistic context-free grammars, synchronous context-free
grammars, dependency parsing models, etc.

» Inference algorithms

» e.g., dynamic programming, belief propagation, methods
based on linear programming and integer linear programming,
dual decomposition/Lagrangian relaxation

» Semi-supervised learning

» e.g., deriving lexical representations from unlabeled data,
cotraining, entropy regularization, canonical correlation

analysis (CCA)

Mapping Sentences to Logical Form

» The task: learn a function that maps a sentence e.g.,
Show me the latest flight from Boston to Seattle on Friday

to a expression in logical form that represents its meaning,
e.g.,

argmaz(Az. flight(x) A from(z, BOS) A to(z, SEA) A
day(z, FRI), \y.time(y))

Admin

» Background required for the class: a prior class in machine
learning and/or natural language processing

» Evaluation:

» Final class project (65%)
» 3 homeworks (25%)
» Class participation (10%)
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Hidden Markov Models

Michael Collins

January 19, 2011

Markov Sequences

» Consider a sequence of random variables X7, Xs,..., X},
where m is the length of the sequence

» Each variable X can take any value in {1,2,... k}

» How do we model the joint distribution

P(Xlzwl,XQZl'g,...,Xm:.’L‘m)

Overview

» Markov models

» Hidden Markov models

The Markov Assumption

P<X1:$17X2:I2,...,Xm:l'm)

= _P(X1 = l‘l)HP(X] = Z’j|X1 =T1,.-. ,X]‘_l = xj—l)
7j=2

= P(Xi=a) [[ P(X; = 2;|X;21 = 2;4)
j=2

» The first equality is exact (by the chain rule).

» The second equality follows from the Markov assumption: for
all j=2...m,

P(Xj = CL’j|X1 = T1y-.. ,Xj,1 = :13];1) = P(Xj = JleXj,1 = .ijl)




Homogeneous Markov Chains

» In a homogeneous Markov chain, we make an additional
assumption, that for j =2...m,

P(Xj = ;| X = 1) = q(wjlz;)
where ¢(z'|z) is some function
» Idea behind this assumption: the transition probabilities do

not depend on the position in the Markov chain (do not
depend on the index j)

A Generative Story for Markov Models

» A sequence T, Za,..., I, is generated by the following
process:

1. Pick x; at random from the distribution ¢(z)

2. Forj=2...m:

» Choose z; at random from the distribution g(z|z;_1)

Markov Models

» Our model is then as follows:

m

p(x1, T2, ... Tm; 0) = q(xq) Hq(:z;j\xj_l)

j=2

» Parameters in the model:

» q(x) forz ={1,2,... ,k}
Constraints: g(z) > 0and YF_ g(z) =1

» q(a|x) for x ={1,2,...,k} and 2’ ={1,2,... k}
Constraints: g(2/|z) >0 and Y% _, q(a'|z) = 1

Today's Lecture

» Markov models

» Hidden Markov models




Modeling Pairs of Sequences

» In many applications, we need to model pairs of sequences
» Examples:

1. Part-of-speech tagging in natural language processing (assign
each word in a sentence to one of the categories noun, verb,
preposition etc.)

2. Speech recognition (map acoustic sequences to sequences of
words)

3. Computational biology: recover gene boundaries in DNA
sequences

Hidden Markov Models (HMM:s)

» In HMMs, we assume that:

P(Xl:Il,...,Xm:ZL’m,Sl:Sl,...,sm:Sm)

m m

= P(S1 = 1) [[ P(S; = 858521 = 55-0) [ [ P(X; = 2185 = s)

Jj=2 J=1

Probabilistic Models for Sequence Pairs

» We have two sequences of random variables:
Xl,XQ,...,Xm and 51,527...,Sm

» Intuitively, each X corresponds to an “observation” and each
S; corresponds to an underlying “state” that generated the
observation. Assume that each S; is in {1,2,...k}, and each
X;isin {1,2,...0}

» How do we model the joint distribution

P(Xlsz)l,...,Xm:.’L'm,Sl:Sl,...,Sm:Sm)

Independence Assumptions in HMMs

» By the chain rule, the following equality is exact:

P(Xl:ZL‘l,...,Xm:ZL'm,Sl:81,...,Sm:Sm)

= _P(Sl:Sl,...,Sm:Sm)X
P(Xlzl’l,...,Xm:l'm‘Sl:Sh...,Sm:Sm)

» Assumption 1: the state sequence forms a Markov chain

P(Slzsl,...,SmZSm) :P(Sl :Sl)HP(SjZSj’Sj—lzsj—l)

Jj=2




Independence Assumptions in HMMs

» By the chain rule, the following equality is exact:

P(X1:Zl'l,...,Xm:Im’S1:51,...,Sm25m)

= HP(XJ‘:33]'|Sl:Sl,...,Sm:Sm,Xl:Il,...Xj_l:Ij)
j=1

» Assumption 2: each observation depends only on the
underlying state

P(Xj:'xj"sl:SI>~~~,Sm:Sm,X1:xl,...Xj_l :Ij)

= P(X; =8 = s;)

A Generative Story for Hidden Markov Models

» Sequence pairs sq, So, ..., Sy and X1, X, ..., T, are generated
by the following process:

1. Pick s1 at random from the distribution #(s). Pick z; from
the distribution e(x|s7)

2. Forj=2...m:

» Choose s; at random from the distribution #(s|s;j_1)

» Choose z; at random from the distribution e(z|s;)

The Model Form for HMMs

» The model takes the following form:

m m

Py Ty S1- .. Sm; 0) = t(s1) Ht(5j|sj_1) H e(xjls;)

» Parameters in the model:

1. Initial state parameters t(s) for s € {1,2,...,k}
2. Transition parameters t(s'|s) for s,s" € {1,2,...,k}

3. Emission parameters e(z|s) for s € {1,2,...,k} and
re{l,2,...,0}

Today's Lecture

» More on Hidden Markov models:

» parameter estimation

» The Viterbi algorithm




Parameter Estimation with Fully Observed Data

» We'll now discuss parameter estimates in the case of fully
observed data: for ¢ = 1...n, we have pairs of sequences z; ;
forj=1...mands;; for j =1...m. (i.e., we have n
training examples, each of length m.)

Parameter Estimation: Emission Parameters

» Assume we have fully observed data: for i = 1...n, we have
pairs of sequences x; ; for j =1...mand s;; for j=1...m

» Define count(i, s ~ x) to be the number of times state s is
paired with emission . More formally:

count(i, s ~ x) = Z[[sid —sAx; = 2l

Jj=1

» The maximum-likelihood estimates of emission probabilities
are then

e(z]s) = > count(i, s ~ x)

N Yo > count(i, s ~ x)

Parameter Estimation: Transition Parameters
» Assume we have fully observed data: for i = 1...n, we have
pairs of sequences x; ; for j =1...m and s;; for j=1...m
» Define count(i, s — ') to be the number of times state s
follows state s in the ¢'th training example. More formally:

-1

3

count(i,s — s') = [[si; =5ASij1=5]]
1

J

(We define [[r]] to be 1 if 7 is true, 0 otherwise.)

» The maximume-likelihood estimates of transition probabilities

are then .
> count(i,s — s)

TSP S count(i, s — o)

t(s'|s)

Parameter Estimation: Initial State Parameters

» Assume we have fully observed data: for i = 1...n, we have
pairs of sequences x; ; for j =1...mand s;; forj=1...m

» Define count(i, s) to be 1 if state s is the initial state in the
sequence, and 0 otherwise:

count(s, s) = [[si1 = $]]

» The maximum-likelihood estimates of initial state probabilities

are: N
> count(s, s)

n

t(s) =




Today's Lecture

» Hidden Markov models:

» parameter estimation

» the Viterbi algorithm

The Viterbi Algorithm

» Goal: for a given input sequence x4, ..., Z,,, find

arg max p(Ty...Tm,S1...5m;0)

S15--35m

» The Viterbi algorithm is a dynamic programming algorithm.
Basic data structure:
ﬂ-[-]’ S]
will be a table entry that stores the maximum probability for

any state sequence ending in state s at position j. More
formally: 7[1, s] = t(s)e(x1]s), and for j > 1,

j—1
m[J, 8] = max [t(sl)e(xﬂsl) <Ht(sk|sk1)e(xk|sk)> t(s|sj_1)e(xj|s)1

S1...85—1 Pt

The Viterbi Algorithm

» Goal: for a given input sequence z1, ..., x,,, find

arg max p(Ty...Tm,S1...Sm;0)

S15055m

» This is the most likely state sequence s; ... s,, for the given
input sequence xy ... Ty,

The Viterbi Algorithm

» Initialization: fors =1...k
m[1, s] = t(s)e(xy|s)
» Forj=2...m,s=1...k:
N — S 1 / t ! .
sl = s ol = 1) x (s15) x el )]
» We then have
max p(xy...%Tm, 81 ... Sy 0) = maxw[m, s|
51...8m s
» The algorithm runs in O(mk?) time




Viterbi as a Shortest-Path Algorithm

v

The input sequence x; ...z, is fixed

Have vertices in a graph labeled (j,s) for s € {1...k} and
j =1...m. In addition have a source vertex labeled 0

For s € {1...k}, we have a directed edge from vertex 0 to
vertex (1,s), with weight t(s)e(z1]s)

For each j =2...m, and s,s" € {1...k}, have a directed
edge from (j — 1,s) to (j,s") with weight ¢(s'|s)e(x;|s") (the
weight of any path is the product of weights on edges in the
path)

7[7, ] is the highest weight for any path from vertex 0 to
vertex (7, s)

Viterbi Algorithm: Backpointers (continued)

» Highest probability for any sequence of states is

max 7[m, s}
S

» To recover identity of highest-probability sequence:
Sm = arg maxmm, s
S

and for j =m...2,

sj—1 = bp[j, s;]

» The sequence of states s ... s, is then

arg max p(Ty...Tm,S1...5m;0)
S1yeens Sm

The

Viterbi Algorithm: Backpointers

Initialization: for s =1...%

(1, s] = t(s)e(x1]s)

Forj=2...m,s=1...k:
m[j,s] = max [r[j — 1,5 x t(s[s") x e(w;]s)]
s'e{l...k}

and
bplj,s] = arg max [r[j — 1,] x t(s|s') x e(x;|s)]
s'e{l...k}

The bp entries are backpointers that will allow us to recover
the identity of the highest probability state sequence




