
Lecture 1, COMS E6998-3, Spring 2011

Michael Collins

January 19, 2011

Today’s Lecture

! Introduction:

! Example problems from machine learning for NLP
! Topics we’ll cover in the course
! Background required for the course
! Projects/homework assignments

! Topic 1: Hidden Markov models

! Topic 2: Log-linear models

A Machine-Learning Example:

Hand-Written Digit Recognition

! The problem: given a hand-written digit, decide whether it is
0, 1, 2, . . . or 9

! A learning approach:

1. Collect several hundred/thousand example digits, and label
them by hand to form a training set

2. Automatically learn a digit recognition model from the
training set

3. Apply the model to new, previously unseen hand-written digits

! Systems built in this way are in widespread use in the U.S.
postal service (ZIP-code recognition), and in automatic
check-reading

Related Problems

! Identifying faces within an image
(see the Viola and Jones face detector)

! Text classification/spam filtering

! Medical applications: e.g., classification of cancer type

! Information retrieval: e.g., ranking web-pages in order of
relevance to a given query

Supervised Learning Problems

! Goal: Learn a function f : X → Y

! We have n training examples

{(x1, y1), (x2, y2), . . . , (xn, yn)}

where each xi ∈ X , and each yi ∈ Y

! Often (not always) X = Rd for some integer d

! Some possibilities for Y :

! Y = {−1,+1} (binary classification)
! Y = {1, 2, . . . , k} for some k > 2 (multi-class classification)
! Y = R (regression)

Sequence Labeling Problems

! Task: learn a function that maps an input sequence

x1, x2, . . . , xm

to an output sequence

y1, y2, . . . , ym

Note: each yi ∈ Yi where Yi is a finite set of possible labels
at the i’th position

! This is a core problem in natural language processing

! Examples: part-of-speech tagging, named-entity recognition

Context-Free Parsing

! The task: learn a function that maps a sentence, e.g.,

the dog saw the cat

to a parse tree,
S

NP

D

the

N

dog

VP

V

saw

NP

D

the

N

cat

Dependency Parsing

! The task: learn a function that maps a sentence, e.g.,

John saw a movie that he liked today

to a dependency structure,

liked today* John saw a movie that he

Machine Translation

! The task: learn a function that maps a sentence in one
language, e.g.,

In wenigen Tagen finden Parlamentswahlen in Slowenian statt

to a sentence in another language,

In a few days elections take place in Slovenia

Mapping Sentences to Logical Form

! The task: learn a function that maps a sentence e.g.,

Show me the latest flight from Boston to Seattle on Friday

to a expression in logical form that represents its meaning,
e.g.,

argmax(λx.f light(x) ∧ from(x,BOS) ∧ to(x, SEA) ∧

day(x, FRI),λy.time(y))

Topics Covered in the Class
! Probabilistic models for structured NLP data

! e.g., hidden Markov models (HMMs), maximum-entropy
Markov models (MEMMs), conditional random fields (CRFs),
probabilistic context-free grammars, synchronous context-free
grammars, dependency parsing models, etc.

! Inference algorithms
! e.g., dynamic programming, belief propagation, methods

based on linear programming and integer linear programming,
dual decomposition/Lagrangian relaxation

! Semi-supervised learning

! e.g., deriving lexical representations from unlabeled data,
cotraining, entropy regularization, canonical correlation
analysis (CCA)

Admin

! Background required for the class: a prior class in machine
learning and/or natural language processing

! Evaluation:

! Final class project (65%)
! 3 homeworks (25%)
! Class participation (10%)

Lecture 1, COMS E6998-3:
Hidden Markov Models

Michael Collins

January 19, 2011

Overview

! Markov models

! Hidden Markov models

Markov Sequences

! Consider a sequence of random variables X1, X2, . . . , Xm

where m is the length of the sequence

! Each variable Xi can take any value in {1, 2, . . . , k}

! How do we model the joint distribution

P (X1 = x1, X2 = x2, . . . , Xm = xm)

?

The Markov Assumption

P (X1 = x1, X2 = x2, . . . , Xm = xm)

= P (X1 = x1)
m
∏

j=2

P (Xj = xj |X1 = x1, . . . , Xj−1 = xj−1)

= P (X1 = x1)
m
∏

j=2

P (Xj = xj |Xj−1 = xj−1)

! The first equality is exact (by the chain rule).
! The second equality follows from the Markov assumption: for

all j = 2 . . .m,

P (Xj = xj |X1 = x1, . . . ,Xj−1 = xj−1) = P (Xj = xj |Xj−1 = xj−1)

Homogeneous Markov Chains

! In a homogeneous Markov chain, we make an additional
assumption, that for j = 2 . . .m,

P (Xj = xj |Xj−1 = xj−1) = q(xj|xj−1)

where q(x′|x) is some function

! Idea behind this assumption: the transition probabilities do
not depend on the position in the Markov chain (do not
depend on the index j)

Markov Models

! Our model is then as follows:

p(x1, x2, . . . xm; θ) = q(x1)
m
∏

j=2

q(xj |xj−1)

! Parameters in the model:

! q(x) for x = {1, 2, . . . , k}
Constraints: q(x) ≥ 0 and

∑k
x=1 q(x) = 1

! q(x′|x) for x = {1, 2, . . . , k} and x′ = {1, 2, . . . , k}
Constraints: q(x′|x) ≥ 0 and

∑k
x′=1 q(x′|x) = 1

A Generative Story for Markov Models

! A sequence x1, x2, . . . , xm is generated by the following
process:

1. Pick x1 at random from the distribution q(x)

2. For j = 2 . . . m:

! Choose xj at random from the distribution q(x|xj−1)

Today’s Lecture

! Markov models

! Hidden Markov models

Modeling Pairs of Sequences

! In many applications, we need to model pairs of sequences

! Examples:

1. Part-of-speech tagging in natural language processing (assign
each word in a sentence to one of the categories noun, verb,
preposition etc.)

2. Speech recognition (map acoustic sequences to sequences of
words)

3. Computational biology: recover gene boundaries in DNA
sequences

Probabilistic Models for Sequence Pairs

! We have two sequences of random variables:
X1, X2, . . . , Xm and S1, S2, . . . , Sm

! Intuitively, each Xi corresponds to an “observation” and each
Si corresponds to an underlying “state” that generated the
observation. Assume that each Si is in {1, 2, . . . k}, and each
Xi is in {1, 2, . . . o}

! How do we model the joint distribution

P (X1 = x1, . . . , Xm = xm, S1 = s1, . . . , Sm = sm)

?

Hidden Markov Models (HMMs)

! In HMMs, we assume that:

P (X1 = x1, . . . , Xm = xm, S1 = s1, . . . , Sm = sm)

= P (S1 = s1)
m
∏

j=2

P (Sj = sj |Sj−1 = sj−1)
m
∏

j=1

P (Xj = xj |Sj = sj)

Independence Assumptions in HMMs
! By the chain rule, the following equality is exact:

P (X1 = x1, . . . , Xm = xm, S1 = s1, . . . , Sm = sm)

= P (S1 = s1, . . . , Sm = sm) ×

P (X1 = x1, . . . , Xm = xm|S1 = s1, . . . , Sm = sm)

! Assumption 1: the state sequence forms a Markov chain

P (S1 = s1, . . . , Sm = sm) = P (S1 = s1)
m
∏

j=2

P (Sj = sj |Sj−1 = sj−1)

Independence Assumptions in HMMs

! By the chain rule, the following equality is exact:

P (X1 = x1, . . . , Xm = xm|S1 = s1, . . . , Sm = sm)

=
m
∏

j=1

P (Xj = xj |S1 = s1, . . . , Sm = sm, X1 = x1, . . .Xj−1 = xj)

! Assumption 2: each observation depends only on the
underlying state

P (Xj = xj |S1 = s1, . . . , Sm = sm, X1 = x1, . . .Xj−1 = xj)

= P (Xj = xj |Sj = sj)

The Model Form for HMMs

! The model takes the following form:

p(x1 . . . xm, s1 . . . sm; θ) = t(s1)
m
∏

j=2

t(sj |sj−1)
m
∏

j=1

e(xj |sj)

! Parameters in the model:

1. Initial state parameters t(s) for s ∈ {1, 2, . . . , k}

2. Transition parameters t(s′|s) for s, s′ ∈ {1, 2, . . . , k}

3. Emission parameters e(x|s) for s ∈ {1, 2, . . . , k} and
x ∈ {1, 2, . . . , o}

A Generative Story for Hidden Markov Models

! Sequence pairs s1, s2, . . . , sm and x1, x2, . . . , xm are generated
by the following process:

1. Pick s1 at random from the distribution t(s). Pick x1 from
the distribution e(x|s1)

2. For j = 2 . . . m:

! Choose sj at random from the distribution t(s|sj−1)

! Choose xj at random from the distribution e(x|sj)

Today’s Lecture

! More on Hidden Markov models:

! parameter estimation

! The Viterbi algorithm

Parameter Estimation with Fully Observed Data

! We’ll now discuss parameter estimates in the case of fully
observed data: for i = 1 . . . n, we have pairs of sequences xi,j

for j = 1 . . .m and si,j for j = 1 . . .m. (i.e., we have n
training examples, each of length m.)

Parameter Estimation: Transition Parameters
! Assume we have fully observed data: for i = 1 . . . n, we have

pairs of sequences xi,j for j = 1 . . .m and si,j for j = 1 . . .m

! Define count(i, s → s′) to be the number of times state s′

follows state s in the i’th training example. More formally:

count(i, s → s′) =
m−1
∑

j=1

[[si,j = s ∧ si,j+1 = s′]]

(We define [[π]] to be 1 if π is true, 0 otherwise.)

! The maximum-likelihood estimates of transition probabilities
are then

t(s′|s) =

∑n
i=1

count(i, s → s′)
∑n

i=1

∑

s′ count(i, s → s′)

Parameter Estimation: Emission Parameters

! Assume we have fully observed data: for i = 1 . . . n, we have
pairs of sequences xi,j for j = 1 . . .m and si,j for j = 1 . . .m

! Define count(i, s ! x) to be the number of times state s is
paired with emission x. More formally:

count(i, s ! x) =
m

∑

j=1

[[si,j = s ∧ xi,j = x]]

! The maximum-likelihood estimates of emission probabilities
are then

e(x|s) =

∑n
i=1

count(i, s ! x)
∑n

i=1

∑

x count(i, s ! x)

Parameter Estimation: Initial State Parameters

! Assume we have fully observed data: for i = 1 . . . n, we have
pairs of sequences xi,j for j = 1 . . .m and si,j for j = 1 . . .m

! Define count(i, s) to be 1 if state s is the initial state in the
sequence, and 0 otherwise:

count(i, s) = [[si,1 = s]]

! The maximum-likelihood estimates of initial state probabilities
are:

t(s) =

∑n
i=1

count(i, s)

n

Today’s Lecture

! Hidden Markov models:

! parameter estimation

! the Viterbi algorithm

The Viterbi Algorithm

! Goal: for a given input sequence x1, . . . , xm, find

arg max
s1,...,sm

p(x1 . . . xm, s1 . . . sm; θ)

! This is the most likely state sequence s1 . . . sm for the given
input sequence x1 . . . xm

The Viterbi Algorithm
! Goal: for a given input sequence x1, . . . , xm, find

arg max
s1,...,sm

p(x1 . . . xm, s1 . . . sm; θ)

! The Viterbi algorithm is a dynamic programming algorithm.
Basic data structure:

π[j, s]

will be a table entry that stores the maximum probability for
any state sequence ending in state s at position j. More
formally: π[1, s] = t(s)e(x1|s), and for j > 1,

π[j, s] = max
s1...sj−1

[

t(s1)e(x1|s1)

(

j−1
∏

k=2

t(sk|sk−1)e(xk|sk)

)

t(s|sj−1)e(xj |s)

]

The Viterbi Algorithm

! Initialization: for s = 1 . . . k

π[1, s] = t(s)e(x1|s)

! For j = 2 . . .m, s = 1 . . . k:

π[j, s] = max
s′∈{1...k}

[π[j − 1, s′] × t(s|s′) × e(xj |s)]

! We then have

max
s1...sm

p(x1 . . . xm, s1 . . . sm; θ) = max
s

π[m, s]

! The algorithm runs in O(mk2) time

Viterbi as a Shortest-Path Algorithm

! The input sequence x1 . . . xm is fixed

! Have vertices in a graph labeled (j, s) for s ∈ {1 . . . k} and
j = 1 . . .m. In addition have a source vertex labeled 0

! For s ∈ {1 . . . k}, we have a directed edge from vertex 0 to
vertex (1, s), with weight t(s)e(x1|s)

! For each j = 2 . . .m, and s, s′ ∈ {1 . . . k}, have a directed
edge from (j − 1, s) to (j, s′) with weight t(s′|s)e(xj |s′) (the
weight of any path is the product of weights on edges in the
path)

! π[j, s] is the highest weight for any path from vertex 0 to
vertex (j, s)

The Viterbi Algorithm: Backpointers

! Initialization: for s = 1 . . . k

π[1, s] = t(s)e(x1|s)

! For j = 2 . . .m, s = 1 . . . k:

π[j, s] = max
s′∈{1...k}

[π[j − 1, s′] × t(s|s′) × e(xj |s)]

and

bp[j, s] = arg max
s′∈{1...k}

[π[j − 1, s′] × t(s|s′) × e(xj |s)]

! The bp entries are backpointers that will allow us to recover
the identity of the highest probability state sequence

Viterbi Algorithm: Backpointers (continued)
! Highest probability for any sequence of states is

max
s

π[m, s]

! To recover identity of highest-probability sequence:

sm = arg max
s

π[m, s]

and for j = m . . . 2,

sj−1 = bp[j, sj]

! The sequence of states s1 . . . sm is then

arg max
s1,...,sm

p(x1 . . . xm, s1 . . . sm; θ)

