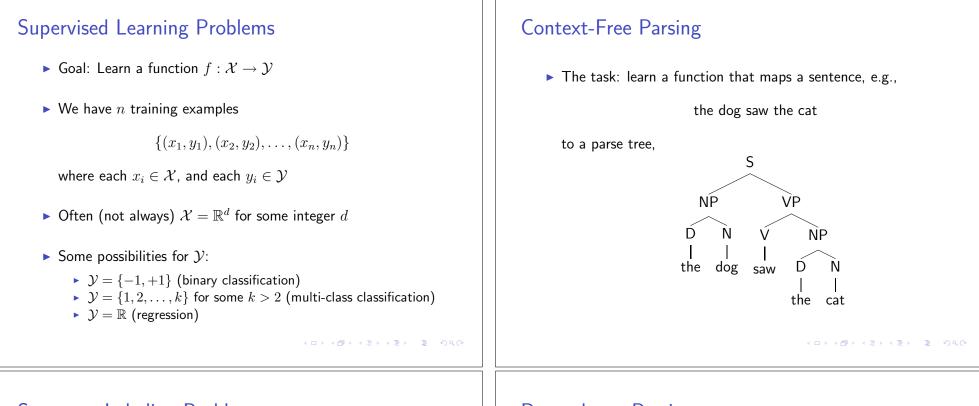
	A Machine-Learning Example: Hand-Written Digit Recognition
Lecture 1, COMS E6998-3, Spring 2011	► The problem: given a hand-written digit, decide whether it is 0, 1, 2, or 9
	A learning approach:
Michael Collins January 19, 2011	 Collect several hundred/thousand example digits, and label them by hand to form a <i>training set</i> Automatically learn a digit recognition <i>model</i> from the training set Apply the model to new, previously unseen hand-written digits
< ロ > 〈 西 > 〈 三 > 〈 □ > ⟨ □ > ⟨ □ > (□ > (□ > (□ > (□ > (□	 Systems built in this way are in widespread use in the U.S. postal service (ZIP-code recognition), and in automatic check-reading
Today's Lecture	Related Problems
 Introduction: Example problems from machine learning for NLP Topics we'll cover in the course Background required for the course Projects/homework assignments Topic 1: Hidden Markov models Topic 2: Log-linear models	 Identifying faces within an image (see the Viola and Jones face detector) Text classification/spam filtering Medical applications: e.g., classification of cancer type Information retrieval: e.g., ranking web-pages in order of relevance to a given query
	ふしゃ 小田 マイボット ボット・ビー シングル



Sequence Labeling Problems

> Task: learn a function that maps an input sequence

 x_1, x_2, \ldots, x_m

to an output sequence

 y_1, y_2, \ldots, y_m

Note: each $y_i \in \mathcal{Y}_i$ where \mathcal{Y}_i is a **finite** set of possible labels at the *i*'th position

- > This is a core problem in natural language processing
- Examples: part-of-speech tagging, named-entity recognition

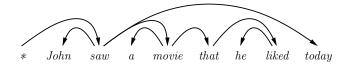
イロト イクト イヨト イヨト ニヨー のくで

Dependency Parsing

▶ The task: learn a function that maps a sentence, e.g.,

John saw a movie that he liked today

to a dependency structure,



Machine Translation

 The task: learn a function that maps a sentence in one language, e.g.,

In wenigen Tagen finden Parlamentswahlen in Slowenian statt

to a sentence in another language,

In a few days elections take place in Slovenia

Mapping Sentences to Logical Form

▶ The task: learn a function that maps a sentence e.g.,

Show me the latest flight from Boston to Seattle on Friday to a expression in logical form that represents its meaning, e.g.,

 $\begin{array}{l} argmax(\lambda x.flight(x) \land from(x,BOS) \land to(x,SEA) \land \\ day(x,FRI), \lambda y.time(y)) \end{array}$

Topics Covered in the Class

- Probabilistic models for structured NLP data
 - e.g., hidden Markov models (HMMs), maximum-entropy Markov models (MEMMs), conditional random fields (CRFs), probabilistic context-free grammars, synchronous context-free grammars, dependency parsing models, etc.
- Inference algorithms
 - e.g., dynamic programming, belief propagation, methods based on linear programming and integer linear programming, dual decomposition/Lagrangian relaxation

Semi-supervised learning

 e.g., deriving lexical representations from unlabeled data, cotraining, entropy regularization, canonical correlation analysis (CCA)

Admin

- Background required for the class: a prior class in machine learning and/or natural language processing
- Evaluation:
 - Final class project (65%)
 - ▶ 3 homeworks (25%)
 - Class participation (10%)

Lecture 1, COMS E6998-3: Hidden Markov Models Michael Collins January 19, 2011	Markov Sequences • Consider a sequence of random variables X_1, X_2, \ldots, X_m where m is the length of the sequence • Each variable X_i can take any value in $\{1, 2, \ldots, k\}$ • How do we model the joint distribution $P(X_1 = x_1, X_2 = x_2, \ldots, X_m = x_m)$?
 (日) (문) (E) (E)	《·□》《圖》《론》《론》 본 원숙()·
Overview	The Markov Assumption $P(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m)$
 Markov models Hidden Markov models 	$= P(X_{1} = x_{1}) \prod_{j=2}^{m} P(X_{j} = x_{j} X_{1} = x_{1}, \dots, X_{j-1} = x_{j-1})$ $= P(X_{1} = x_{1}) \prod_{j=2}^{m} P(X_{j} = x_{j} X_{j-1} = x_{j-1})$ $= The first equality is exact (by the chain rule).$ $= The second equality follows from the Markov assumption: for all j = 2 \dots m,P(X_{j} = x_{j} X_{1} = x_{1}, \dots, X_{j-1} = x_{j-1}) = P(X_{j} = x_{j} X_{j-1} = x_{j-1})$
(日)(第)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)	・ロット語・トロット 聞、 うんぐ

Homogeneous Markov Chains

▶ In a *homogeneous* Markov chain, we make an additional assumption, that for $j = 2 \dots m$,

 $P(X_j = x_j | X_{j-1} = x_{j-1}) = q(x_j | x_{j-1})$

where q(x'|x) is some function

 Idea behind this assumption: the transition probabilities do not depend on the position in the Markov chain (do not depend on the index j)

A Generative Story for Markov Models

- ► A sequence x₁, x₂, ..., x_m is generated by the following process:
 - 1. Pick x_1 at random from the distribution q(x)
 - 2. For $j = 2 \dots m$:
 - Choose x_j at random from the distribution $q(x|x_{j-1})$

・ロト・西ト・ヨト・ヨー シタの

Markov Models

Our model is then as follows:

$$p(x_1, x_2, \dots, x_m; \underline{\theta}) = q(x_1) \prod_{j=2}^m q(x_j | x_{j-1})$$

- ► Parameters in the model:
 - q(x) for $x = \{1, 2, \dots, k\}$ Constraints: $q(x) \ge 0$ and $\sum_{x=1}^{k} q(x) = 1$
 - q(x'|x) for $x = \{1, 2, \dots, k\}$ and $x' = \{1, 2, \dots, k\}$ Constraints: $q(x'|x) \ge 0$ and $\sum_{x'=1}^{k} q(x'|x) = 1$

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Today's Lecture

- Markov models
- Hidden Markov models

Modeling Pairs of Sequences

- ▶ In many applications, we need to model *pairs* of sequences
- ► Examples:
 - 1. Part-of-speech tagging in natural language processing (assign each word in a sentence to one of the categories noun, verb, preposition etc.)
 - 2. Speech recognition (map acoustic sequences to sequences of words)
 - 3. Computational biology: recover gene boundaries in DNA sequences

Hidden Markov Models (HMMs)

▶ In HMMs, we assume that:

 $P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$ = $P(S_1 = s_1) \prod_{j=2}^m P(S_j = s_j | S_{j-1} = s_{j-1}) \prod_{j=1}^m P(X_j = x_j | S_j = s_j)$

・ ロ ト ・ 御 ト ・ 言 ト ・ 言 ・ うへぐ

Probabilistic Models for Sequence Pairs

- ▶ We have two sequences of random variables: X₁, X₂,..., X_m and S₁, S₂,..., S_m
- Intuitively, each X_i corresponds to an "observation" and each S_i corresponds to an underlying "state" that generated the observation. Assume that each S_i is in {1, 2, ... k}, and each X_i is in {1, 2, ... o}
- How do we model the joint distribution

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

?

Independence Assumptions in HMMs

▶ By the chain rule, the following equality is exact:

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

$$= P(S_1 = s_1, \dots, S_m = s_m) \times P(X_1 = x_1, \dots, X_m = x_m | S_1 = s_1, \dots, S_m = s_m)$$

► Assumption 1: the state sequence forms a Markov chain

$$P(S_1 = s_1, \dots, S_m = s_m) = P(S_1 = s_1) \prod_{j=2}^m P(S_j = s_j | S_{j-1} = s_{j-1})$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Independence Assumptions in HMMs

▶ By the chain rule, the following equality is exact:

$$P(X_1 = x_1, \dots, X_m = x_m | S_1 = s_1, \dots, S_m = s_m)$$

=
$$\prod_{j=1}^m P(X_j = x_j | S_1 = s_1, \dots, S_m = s_m, X_1 = x_1, \dots, X_{j-1} = x_j)$$

 Assumption 2: each observation depends only on the underlying state

$$P(X_j = x_j | S_1 = s_1, \dots, S_m = s_m, X_1 = x_1, \dots, X_{j-1} = x_j)$$

= $P(X_j = x_j | S_j = s_j)$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ りへぐ

A Generative Story for Hidden Markov Models

- ▶ Sequence pairs $s_1, s_2, ..., s_m$ and $x_1, x_2, ..., x_m$ are generated by the following process:
 - 1. Pick s_1 at random from the distribution t(s). Pick x_1 from the distribution $e(x|s_1)$
 - 2. For $j = 2 \dots m$:
 - Choose s_j at random from the distribution $t(s|s_{j-1})$
 - Choose x_j at random from the distribution $e(x|s_j)$

ふりん 同 《山を《川を《山を

The Model Form for HMMs

▶ The model takes the following form:

$$p(x_1 \dots x_m, s_1 \dots s_m; \underline{\theta}) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

- ► Parameters in the model:
 - 1. Initial state parameters t(s) for $s \in \{1, 2, \dots, k\}$
 - 2. Transition parameters t(s'|s) for $s, s' \in \{1, 2, \dots, k\}$
 - 3. Emission parameters e(x|s) for $s \in \{1, 2, \dots, k\}$ and $x \in \{1, 2, \dots, o\}$

Today's Lecture

- ► More on Hidden Markov models:
 - parameter estimation
 - The Viterbi algorithm

Parameter Estimation with Fully Observed Data

▶ We'll now discuss parameter estimates in the case of fully observed data: for i = 1...n, we have pairs of sequences x_{i,j} for j = 1...m and s_{i,j} for j = 1...m. (i.e., we have n training examples, each of length m.)

Parameter Estimation: Transition Parameters

► Assume we have fully observed data: for i = 1...n, we have pairs of sequences x_{i,j} for j = 1...m and s_{i,j} for j = 1...m

▶ Define count(i, s → s') to be the number of times state s' follows state s in the i'th training example. More formally:

$$\operatorname{count}(i, s \to s') = \sum_{j=1}^{m-1} [[s_{i,j} = s \land s_{i,j+1} = s']]$$

(We define $[[\pi]]$ to be 1 if π is true, 0 otherwise.)

The maximum-likelihood estimates of transition probabilities are then

$$t(s'|s) = \frac{\sum_{i=1}^{n} \operatorname{count}(i, s \to s')}{\sum_{i=1}^{n} \sum_{s'} \operatorname{count}(i, s \to s')}$$

Parameter Estimation: Emission Parameters

- ► Assume we have fully observed data: for i = 1...n, we have pairs of sequences x_{i,j} for j = 1...m and s_{i,j} for j = 1...m
- ▶ Define count(i, s → x) to be the number of times state s is paired with emission x. More formally:

$$\mathsf{count}(i, s \rightsquigarrow x) = \sum_{j=1}^{m} [[s_{i,j} = s \land x_{i,j} = x]]$$

The maximum-likelihood estimates of emission probabilities are then

$$e(x|s) = \frac{\sum_{i=1}^{n} \operatorname{count}(i, s \rightsquigarrow x)}{\sum_{i=1}^{n} \sum_{x} \operatorname{count}(i, s \rightsquigarrow x)}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

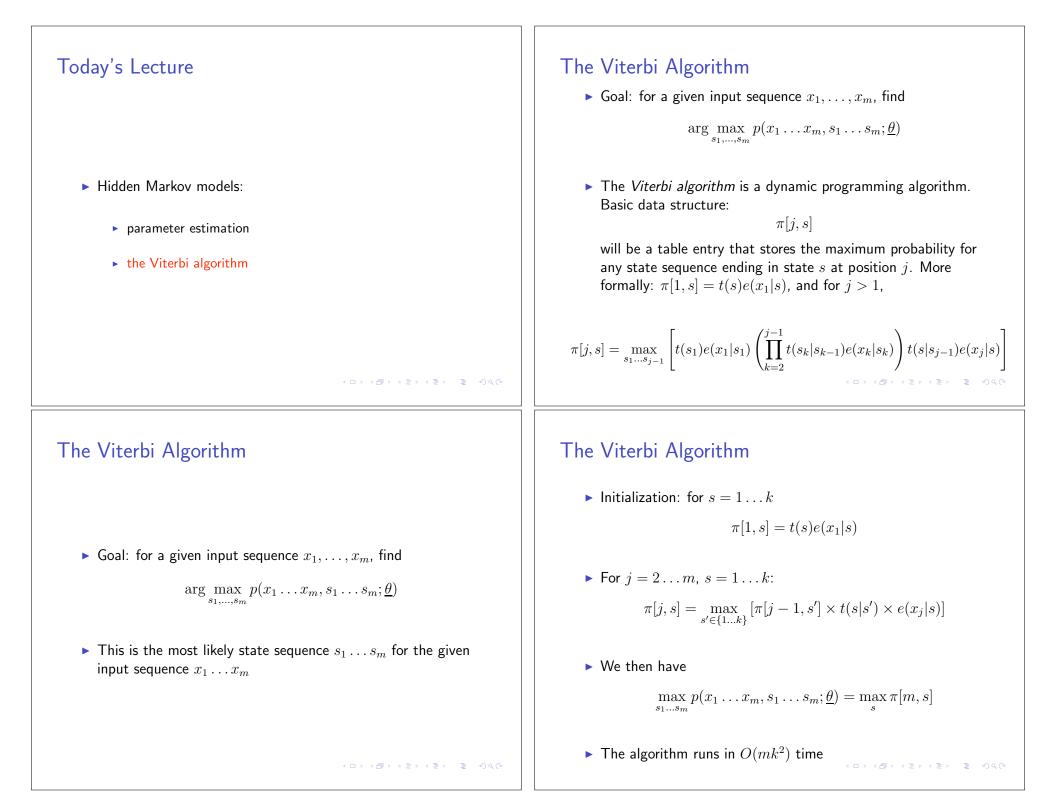
Parameter Estimation: Initial State Parameters

- ► Assume we have fully observed data: for i = 1...n, we have pairs of sequences x_{i,j} for j = 1...m and s_{i,j} for j = 1...m
- Define count(i, s) to be 1 if state s is the initial state in the sequence, and 0 otherwise:

$$\mathsf{count}(i,s) = [[s_{i,1} = s]]$$

The maximum-likelihood estimates of initial state probabilities are:

$$t(s) = \frac{\sum_{i=1}^{n} \operatorname{count}(i, s)}{n}$$



Viterbi as a Shortest-Path Algorithm

- The input sequence $x_1 \dots x_m$ is fixed
- ▶ Have vertices in a graph labeled (j, s) for $s \in \{1 ... k\}$ and j = 1 ... m. In addition have a source vertex labeled 0
- ▶ For $s \in \{1...k\}$, we have a directed edge from vertex 0 to vertex (1, s), with weight $t(s)e(x_1|s)$
- For each $j = 2 \dots m$, and $s, s' \in \{1 \dots k\}$, have a directed edge from (j 1, s) to (j, s') with weight $t(s'|s)e(x_j|s')$ (the weight of any path is the product of weights on edges in the path)
- $\blacktriangleright \ \pi[j,s]$ is the highest weight for any path from vertex 0 to vertex (j,s)

The Viterbi Algorithm: Backpointers

• Initialization: for $s = 1 \dots k$

 $\pi[1,s] = t(s)e(x_1|s)$

• For $j = 2 \dots m$, $s = 1 \dots k$:

$$\pi[j,s] = \max_{s' \in \{1...k\}} [\pi[j-1,s'] \times t(s|s') \times e(x_j|s)]$$

 and

$$bp[j,s] = \arg\max_{s' \in \{1...k\}} [\pi[j-1,s'] \times t(s|s') \times e(x_j|s)]$$

The bp entries are backpointers that will allow us to recover the identity of the highest probability state sequence

Viterbi Algorithm: Backpointers (continued)

Highest probability for any sequence of states is

 $\max_{s} \pi[m, s]$

► To recover identity of highest-probability sequence:

$$s_m = \arg \max \pi[m, s]$$

and for $j = m \dots 2$,

$$s_{j-1} = bp[j, s_j]$$

• The sequence of states $s_1 \dots s_m$ is then

 $\arg\max_{s_1,\ldots,s_m} p(x_1\ldots x_m, s_1\ldots s_m; \underline{\theta})$

・ロン・御と、前と、前と、前、今への