Lecture 4, COMS E6998-3:
Disciminative Context-Free Parsing

Michael Collins

February 9, 2011

Context-Free Parse Trees
S

N

NP VP
T TN
D N v NP

| | | N
the dog saw D N

the cat

» Each ruleis a tuple (X =Y Z i k,j) where X — Y Zis a rule,
non-terminal X spans words ... j inclusive, Y spans words i ...k
inclusive, Z spans words (k4 1) ... inclusive.

» Rules in this example:
S—NPVP1,2,5
NP — D N,1,1,2
VP—V NP,3,3,5
NP — D N,4,4,5

Context-Free Grammars

» A context-free grammar (CFG) in Chomsky normal form is a
tuple (V, X, R, S) where:

» V is a finite set of non-terminal symbols
» X is a finite set of terminal symbols
» R is a set of rules: each rule either takes the form

X—=YZ

where X, Y, Z €V, or

where X € Vand w € &
» S €V is the start symbol

Ambiguity

There are many sources of ambiguity: PP attachment,
part-of-speech ambiguity, coordination, etc. etc.

Notation

» Assume z is a sequence of words z; ...z,
» A context-free parse is a vector y

» First, define the index set 7 to be the set of all possible rules.
For example, for m = 3,

I={X—=>YZikj:X—->YZeR1<i<k<j<m}

» Then y is a vector of values y(r) for all r € Z. y(r) = 1 if the
structure contains the rule (), y(r) = 0 otherwise.

» We use) to refer to the set of all possible well-formed vectors
y

CRFs for Discriminative Context-Free Parsing

> We use ®(z,y) € R to refer to a feature vector for an entire
dependency structure y

» We then build a log-linear model, very similar to a CRF

exp (w- ®(z,y))
> yey exp (w- 2(z.y))

p(ylz; w) =

» How do we define ®(z,y)? Answer:

Dz,y) =Y y(r)d(z,r)

rel

where ¢(xz,7) is the feature vector for rule r

Feature Vectors for Rules

» ¢z, X =Y Z,i,k,j) is a feature vector representing rule
X =Y Z,ik,j

for sentence x
» Example features:
> lIdentity of therule X - Y Z
» Identity of the rule X — Y Z in conjunction with words at

the boundary points ¢, k, or j
» etc. etc.

Decoding
» The decoding problem: find

argmaxp(y|z;w) = argmax exp (w- (z,y))
g yeY ply|L; w & yeY D ey €Xp (w- ®(z,y))

— ° @)
arg I;e%g(exp (M @(z g))

= argmax w-®(z,y)

yey

= arg I;e%i{ w - TGZI y(r)o(z,)

= arg Illjleaj?(Z y(r) (w : @(L T))
= rel

» This problem can be solved using dynamic programming, in
O(m3) time, where m is the length of the sentence

Decoding using the CKY Algorithm
» For convenience, define

O(r) =w-¢(z,r)

The decoding problem is to find
0
arg max Tezzy(r) (r)

» Dynamic programming algorithm: define
(X, 4,]

for X € N, 1 <14 < j <m to be the highest score for any
subtree rooted in non-terminal X, spanning words i...J
inclusive

Parameter Estimation

» To estimate the parameters, we assume we have a set of n
labeled examples, {(z’,3')}_,. Each z' is an input sequence
Ty ..., each y' is a context-free tree

» We then proceed in exactly the same way as for CRFs

» The regularized log-likelihood function is

- . A
L —_ 1 AP - 2
() =3 logplye's) ~ Fllul
» The parameter estimates are
w' = argmax 3 logp(ylatiw) — 2wl
o weRd = ="' 2

The gradient of L(w) can again be calculated efficiently, using
dynamic programming algorithms

Decoding using the CKY Algorithm (continued)

» Initialization: for i =1...m, X € G, define 7[X,i,i] = 0 if
X — x; is a valid rule, —oo otherwise. (Recall that z; is the
i'th word in the input sentence.)

» Recursive case: for X € G, for 1 <i < j <n,

X0 j) = max (0(X =Y Zyikj)+ nlY,i k] + 72,k + 1,)
XY ZER,
kefi..j—1}

» The highest scoring tree has score 7[5, 1, m]|. Backpointers
can be used to recover the identity of the highest scoring tree.

Lecture 4, COMS E6998-3:
The Structured Perceptron

Michael Collins

February 9, 2011

Conditional Random Fields (CRFs)

» Notation: for convenience we'll use z to refer to the sequence
of input words, z;...x,,, and s to refer to a sequence of
possible states, s1...s,,. The set of possible states is S. We
use) to refer to the set of all possible state sequences (we
have |Y| = |S]™).

» We're again going to build a model of

p(s1...Sm|T1 ..) = p(s|z)

CRFs (continued)

exp (w - ®(z, s))
s'ey €XP (Q) i(iv §/))

p(s|z; w) = 5

» How do we define ®(x,s)? Answer:
g(£7 §) = ZQ<£7 ja Sj—1, Sj)
j=1

where ¢(z, j,s;_1,5;) are the same as the feature vectors used
in MEMMs.

CRFs

» We use ®(z, s) € R? to refer to a feature vector for an entire
state sequence

» We then build a giant log-linear model,

) — exp (w - ®(z, s))
p(sz; w) D gy exp(w- 2(z,)

» The model is “giant” in the sense that: 1) the space of
possible values for s, i.e.,), is huge. 2) The normalization
constant (denominator in the above expression) involves a sum
over a huge number of possibilities (i.e., all members of)).

Decoding with CRFs
» The decoding problem: find

(s) exp (w - ®(z,s))
argmaxp(s|z;w) = argmax
& seyY PASIL & s€Y Zg’Ey €xXp (M ' @(£7 5/))
arg rgeayx exp (w - ®(z, s))
= * (b
arg néaeayx w- P(z,s)

= argmax Q'ZQ(LJ, 5j-1,55)

sE
s€Y p=
m
= argmax w-P(z,7,55-1,5;)
s€y — -
‘7:

» Again, we can use the Viterbi algorithm...

The Viterbi Algorithm for CRFs

» Initialization: for s € S
ﬂ-[lv S] =w- ?(gv 17 50, S)
where sq is a special “initial” state.

» Forj=2...m,s=1...k:
7[j,s] =max [r[j — 1, ']+ w- ¢(z, 4,5,)]

s'eS
» We then have

m
max Z oz, j, 551, 8;) = maxw[m, s]
81...-Sm S

» The algorithm runs in O(mk?) time. As before (see HMM
lecture slides), we can use backpointers to recover the most
likely sequence of states.

The Structured Perceptron
» Input: labeled examples, {(z¢,)} ;.
» Initialization: w =0
» Fort=1...T,fori=1...n

» Use the Viterbi algorithm to calculate

m

=a a P =a a , ,
s* rgrgle)i(w-B(z, 5) rgmeﬁc lewgbxjsjlsj)
» Updates:
w = w+9(£1,§i)72@3§*)
m m
= M‘FZQ@ J: s] 1S Z $Ja] 1S)

» Return w

Parameter Estimation in CRFs

» To estimate the parameters, we assume we have a set of n
labeled examples {(z',s")}I~,. Each z" is an input sequence
xy...x , each s is a state sequence st...st.

» We then proceed in exactly the same way as for regular
log-linear models

» The regularized log-likelihood function is
- Q|0 A
= > logp(s'|a’s w) — |||
i=1

» Our parameter estimates are

A

w” = arg max Zlogp atw) — HQHQ

weRd

» We find the optimal parameters using gradient-based methods

The Structured Perceptron with Averaging

» Input: labeled examples, {(z¢,)} ;.
Initialization: w =0, w, =0

» Fort=1...T, fori=1...n

» Use the Viterbi algorithm to calculate

m
=) =
s* argrélealgc w- (a: s argma Z x]vsj lasj)
» Updates:

w = w4+ Pz’ s") - 2(z’,5")

m)) m
= M+Z?(xa]75;—175;)_2¢(x JsSj—1> ;)

j=1 j=1

w, = £a+u

» Return w,/nT

Convergence of the Structured Perceptron

» Definition: The training set {(2, s')}", is separable with
margin 6 > 0, if there exists some parameter vector w such
that:

1 Jfulf? = 1
2. Foralli=1...n, for all s1...s,, such that s; # sé for some
g - ,
w - i(x’l’ SZ) —w- @(zlv§) Z 0

» Theorem: if a training set is separable with margin 4, the
structured perceptron makes at most
R2
52
mistakes before convergence, where R is related to the norm
of the feature vectors ®(z, s)

Conditional Random Fields (CRFs)

» Notation: for convenience we'll use x to refer to the sequence
of input words, x;...z,,, and s to refer to a sequence of
possible states, s;...5s,,. The set of possible states is S. We
use 8™ to refer to the set of all possible state sequences (we
have |S™] = |S|™).

» We're again going to build a model of

p(s1...SmlT1. . 2m) = p(s|z)

Lecture 4, COMS E6998-3:
Pairwise CRFs

Michael Collins

February 9, 2011

CRFs

» We use ®(z, s) € R? to refer to a feature vector for an entire
state sequence

» We then build a giant log-linear model,

exp (w - ®(z, s))
Y gesm exp(w - (z, 8'))

» The model is “giant” in the sense that: 1) the space of
possible values for s, i.e., 8™, is huge. 2) The normalization
constant (denominator in the above expression) involves a sum
over a huge number of possibilities (i.e., all members of S).

p(s|z; w) =

CRFs (continued)

exp (w - ®(z, 5))
D _gesn exp (w- 2(z,5'))

p(slz; w) =

» We assume that we have a graph with nodes
V ={1,2,...,m}, and a set of undirected edges F

» How do we define ®(z,s)? Answer:

@(E)ﬁ): Z ?(iuja]C,Sj,Sk)

(4,k)EE

Parameter Estimation in CRFs

» To estimate the parameters, we assume we have a set of n
labeled examples {(2%, s")}_,. Each z' is an input sequence
xl , each s’ is a state sequence st...s

L.
> We then proceed in exactly the same way as for regular
log-linear models

» The regularized log-likelihood function is
- o A\
=D logp(s'lz) — [l
i=1
» Our parameter estimates are

Lo A
* = argma lo Yot w) — = w|?
w" = arg max ;_1 gp(s'lz’; w) — 3wl

Decoding with CRFs

» The decoding problem: find

exp (w - ®(z, s))

arg ma S|Z;w) = argma
g max p(s|z; w) & eom Y vesm exp (w - B(z,5))
= argmax exp(w-P(z,s))
seES™
arggg%gg w- D(z,s)
= arglax w- Z (@, j, k, sy, sk)
(Gk)eE
= argax Z 05, k, sj, sk)
(Gk)eE

where
9(]7 ka Sj, Sk> =w- é(&a j7 ka Sj, Sk)

Finding the Maximum-Likelihood Estimates

» We'll again use gradient-based optimization methods to find

*

w

» How can we compute the derivatives? As before,

6?01 (w) Z@l ZZ slzt; w)®y (', 8) — My

i SeES™

» The first term is easily computed, because

Zq)l(ii Z Z ¢l_7jv)]7)

v (j,k)eEE

» The second term involves a sum over 8™, and because of this
looks nasty...

Calculating Derivatives using the
Forward-Backward Algorithm

» We now consider how to compute the second term:

> plsla’sw) izl s) = Y plsla’iw) D dil@, ik, sg,sk)

seS™ seS™ (4,k)eE

= Z Z Q;’,k(a?b)¢l(

(j,k)EE a€S,beS

', 5.k, a,b)

where

The Model Form for Markov Random Fields

» Model form for a pairwise MRF

p(xy, T2, ... 2,;0) = Z%Q) exp{ Z 0, (xi,x;)}

(i,J)€E

1
- 70 I wisiz;)

— (i,j)€E

where
» F is the set of edges in the undirected graph
> Vi (wi, w;) = exp{fij(zi x;)}

> Z(0) =20 2 H(i,j)eE Vij(@i,)

Lecture 4: Belief Propagation

Michael Collins

February 9, 2011

Two Key Problems

» (1) Computing the partition function,

720)= > [l vislaiz)

Z1...Tp (i,j)EE

» (2) Computing marginal probabilities under the model,

for any random variable X;, for any value z. e.g.,
P(X7 = +1;0)
» Note:
1
P(X;=;0) = m Z (i,) H Vi (i,)

Z1..-Tn (i,)eE

where 0(z;,x) = 1 if z; = x, 0 otherwise

Tree-Structured MRFs

» In this lecture, we'll consider the case where the underlying
graph is a tree (easy case: dynamic programming)

» First step: pick one of the vertices in the tree as a root (any
node will do). In this example, we pick node 11:

Computing the Partition Function

For each possible value of x7, calculate

m1—>7 l"? E ¢17 x17$7

mi_7(z7) is a “message” from node 1 to node 7 about the
possible value x; for node 7.
Similarly, calculate

m2—>7 iE? 21/)27 $2,9€7) m3—>8 9U8 Z%s $3,$8

m4ﬁs 338 E ¢48 $4,338) m5ﬂ1o 3010 E ¢5 10 33575510

meﬂw 5010 E 1% 10 %Jw

Tree-Structured MRFs

» In a first step, we'll send “messages” up through the tree

» The messages basically correspond to bottom-up dynamic
programming

The General Form for the Messages
» For any node i, define N(7) to be the set of neighbors of 7 in

the graph:
N(i) ={j: (i,j) € E}

» The messages are then defined as

Mij—j x] Z ¢z] s -77]) H mkﬂz(.’ﬂl)

keN(i),k#j

» Note: special case, if N(i) = {j}, then message is

My 33] E ¢zg mzaxj

Computing the Partition Function

Next, calculate

mr—g(x9) = 21/17,9(137, T9)mi—7(x7)ma—7(27)

7

msag(fﬂg) = Z ¢8,9(5L“87 Hﬁg)msas(ﬂﬁs)mz;ﬂs(%’s)

8

mg—11 (3011) = Z ¢9,11(l’9, $11)m7ﬂg($9)msag($9)

Z9

mman(l'u) = Z ¢10,11($10,$11)m5a10($10)mﬁa10($1o)
10

And finally,

Z(Q) = Z m9—>11($11)m10—>11($11)

x11

Two Key Problems

» (1) Computing the partition function,

720)= > [l vislaiz)

Z1...Tp (i,j)EE

» (2) Computing marginal probabilities under the model,

for any random variable X;, for any value z. e.g.,
P(X7 =+1;0)
» Note:
1
P(X;=;0) = m Z (i,) H Vi (i, 5)

Z1..Tn (i,J)eE

where 0(z;,x) = 1 if z; = x, 0 otherwise

What do the Messages Represent?
» An example: mg_11(z11)

» Take T'(9,11) to be the following subtree:

The subtree contains the edge (9,11), together with the subtree

rooted at node 9 that is the component when the edge (9, 11) is
removed from the graph

» Then mg_11(x11) = 2117$27$371’471’7@8@9 H(L]‘)ET(9711) bij (i, xj)

Belief Propagation (Continued)

» In a second step, we'll send “messages’ down the tree

» We use the same definition as before,

mi(z) =Y Ciglenay) [] meeal)

EEN(3),k#j

Downward Messages

mnag(xg) = Z ¢11,9(5C117 wg)mmﬂu (111)

11

mnﬁm(xlo) = Z %1,10(33117 3310)7719%11(3311)

11

mo_7(x7) = Z@bg,?(xg, T7)M11-9(T9)Ms—9(T9)

T9

Mmy_s(rs) = Z¢9,8($9>) M11-9(T9)m7—9(T9)

Z9

and so on, until all the downward messages are computed

Summary

» We choose one node of the tree as the root (in our example, we
chose node 11)

» First compute messages m;_.;(x;) bottom-up in the tree

» Then compute messages top-down through the tree: at this point
we have messages between all pairs of nodes, in both directions

» We can then take the root messages, and calculate the partition
function, e.g., Z(0) = >_, . mo—11(z11)m10-11(211)

» And we can also compute the full set of marginal probabilities

1
P(i = &Iy 9 f H m]H1
JEN(3)

Computing Marginals

» Once we have all the messages, we can easily compute
marginals

» For example,

P(Xg = +1;Q) = TTl7_>9<+1)m8_>9(+1)m11—>9(+1>

1
Z(0)

» The general form:

What do the Messages Represent?

> A second example: mqy1—9(z9)

> Take T'(11,9) to be the following subtree:

The subtree contains the edge (11,9), together with the subtree
rooted at node 11 that is the component when the edge (11,9) is
removed from the graph

> Then my1_9(79) = sz,xﬁ,m,xu H(i,j)ET(ll,Q) Yij (@i, ;)

Finding the Maximum
> How do we find maxy, ..o, [jyep i (i z;) ?

» For any node i, define N (i) to be the set of neighbors of i in the
graph:
N(i) ={j: (i,j) € E}

v

The messages are then defined as

mi—j(25) = max; ;(zi, v5) | J D)
! KEN (i),k+j

v

Note: special case, if N(i) = {j}, then message is
mi—j(j) = maxg, ¥;;(w;, 5)

v

And finally (for our example), the maximum scoring assignment is

xgix mo—11 (3511)m10—>11 (3511)

Hidden Markov Models (HMM:s)

» In HMMs, we assume that:

P(Xlzﬂfl,...,X :$m,51:81,...,sm28m)

m

= P(5 HPS = 5551 =5;0) [[P(X; = 5] S; =)

j=2 j=1

» A Bayesian network representing the HMM (assume m = 5):

AT
&

» If we run belief propogation on this Bayesian network, we
recover the forward-backward algorithm

