
Lecture 4, COMS E6998-3:
Disciminative Context-Free Parsing

Michael Collins

February 9, 2011

Context-Free Grammars

! A context-free grammar (CFG) in Chomsky normal form is a
tuple (V, Σ, R, S) where:

! V is a finite set of non-terminal symbols
! Σ is a finite set of terminal symbols
! R is a set of rules: each rule either takes the form

X → Y Z

where X,Y,Z ∈ V , or

X → w

where X ∈ V and w ∈ Σ
! S ∈ V is the start symbol

Context-Free Parse Trees
S

NP

D

the

N

dog

VP

V

saw

NP

D

the

N

cat

! Each rule is a tuple 〈X → Y Z, i, k, j〉 where X → Y Z is a rule,

non-terminal X spans words i . . . j inclusive, Y spans words i . . . k

inclusive, Z spans words (k + 1) . . . j inclusive.

! Rules in this example:

S → NP V P, 1, 2, 5

NP → D N, 1, 1, 2

V P → V NP, 3, 3, 5

NP → D N, 4, 4, 5

Ambiguity

There are many sources of ambiguity: PP attachment,
part-of-speech ambiguity, coordination, etc. etc.

Notation

! Assume x is a sequence of words x1 . . . xm

! A context-free parse is a vector y

! First, define the index set I to be the set of all possible rules.
For example, for m = 3,

I = {X → Y Z, i, k, j : X → Y Z ∈ R, 1 ≤ i ≤ k < j ≤ m}

! Then y is a vector of values y(r) for all r ∈ I. y(r) = 1 if the
structure contains the rule (r), y(r) = 0 otherwise.

! We use Y to refer to the set of all possible well-formed vectors
y

Feature Vectors for Rules

! φ(x, X → Y Z, i, k, j) is a feature vector representing rule

X → Y Z, i, k, j

for sentence x

! Example features:

! Identity of the rule X → Y Z
! Identity of the rule X → Y Z in conjunction with words at

the boundary points i, k, or j
! etc. etc.

CRFs for Discriminative Context-Free Parsing

! We use Φ(x, y) ∈ Rd to refer to a feature vector for an entire
dependency structure y

! We then build a log-linear model, very similar to a CRF

p(y|x; w) =
exp

(

w · Φ(x, y)
)

∑

y′∈Y exp
(

w · Φ(x, y′)
)

! How do we define Φ(x, y)? Answer:

Φ(x, y) =
∑

r∈I

y(r)φ(x, r)

where φ(x, r) is the feature vector for rule r

Decoding
! The decoding problem: find

arg max
y∈Y

p(y|x; w) = arg max
y∈Y

exp
(

w · Φ(x, y)
)

∑

y′∈Y exp
(

w · Φ(x, y′)
)

= arg max
y∈Y

exp
(

w · Φ(x, y)
)

= arg max
y∈Y

w · Φ(x, y)

= arg max
y∈Y

w ·
∑

r∈I

y(r)φ(x, r)

= arg max
y∈Y

∑

r∈I

y(r)
(

w · φ(x, r)
)

! This problem can be solved using dynamic programming, in
O(m3) time, where m is the length of the sentence

Decoding using the CKY Algorithm

! For convenience, define

θ(r) = w · φ(x, r)

The decoding problem is to find

arg max
y∈Y

∑

r∈I

y(r)θ(r)

! Dynamic programming algorithm: define

π[X, i, j]

for X ∈ N , 1 ≤ i ≤ j ≤ m to be the highest score for any
subtree rooted in non-terminal X, spanning words i . . . j
inclusive

Decoding using the CKY Algorithm (continued)

! Initialization: for i = 1 . . .m, X ∈ G, define π[X, i, i] = 0 if
X → xi is a valid rule, −∞ otherwise. (Recall that xi is the
i’th word in the input sentence.)

! Recursive case: for X ∈ G, for 1 ≤ i < j ≤ n,

π[X, i, j] = max
X→Y Z∈R,

k∈{i...j−1}

(θ(X → Y Z, i, k, j) + π[Y, i, k] + π[Z, k + 1, j])

! The highest scoring tree has score π[S, 1, m]. Backpointers
can be used to recover the identity of the highest scoring tree.

Parameter Estimation
! To estimate the parameters, we assume we have a set of n

labeled examples, {(xi, yi)}n
i=1

. Each xi is an input sequence
xi

1 . . . xi
m, each yi is a context-free tree

! We then proceed in exactly the same way as for CRFs
! The regularized log-likelihood function is

L(w) =
n

∑

i=1

log p(yi|xi; w) −
λ

2
||w||2

! The parameter estimates are

w∗ = arg max
w∈Rd

n
∑

i=1

log p(yi|xi; w) −
λ

2
||w||2

The gradient of L(w) can again be calculated efficiently, using
dynamic programming algorithms

Lecture 4, COMS E6998-3:
The Structured Perceptron

Michael Collins

February 9, 2011

Conditional Random Fields (CRFs)

! Notation: for convenience we’ll use x to refer to the sequence
of input words, x1 . . . xm, and s to refer to a sequence of
possible states, s1 . . . sm. The set of possible states is S. We
use Y to refer to the set of all possible state sequences (we
have |Y| = |S|m).

! We’re again going to build a model of

p(s1 . . . sm|x1 . . . xm) = p(s|x)

CRFs

! We use Φ(x, s) ∈ Rd to refer to a feature vector for an entire
state sequence

! We then build a giant log-linear model,

p(s|x; w) =
exp (w · Φ(x, s))

∑

s′∈Y exp (w · Φ(x, s′))

! The model is “giant” in the sense that: 1) the space of
possible values for s, i.e., Y , is huge. 2) The normalization
constant (denominator in the above expression) involves a sum
over a huge number of possibilities (i.e., all members of Y).

CRFs (continued)

p(s|x; w) =
exp (w · Φ(x, s))

∑

s′∈Y exp (w · Φ(x, s′))

! How do we define Φ(x, s)? Answer:

Φ(x, s) =
m

∑

j=1

φ(x, j, sj−1, sj)

where φ(x, j, sj−1, sj) are the same as the feature vectors used
in MEMMs.

Decoding with CRFs
! The decoding problem: find

arg max
s∈Y

p(s|x; w) = arg max
s∈Y

exp (w · Φ(x, s))
∑

s′∈Y exp (w · Φ(x, s′))

= arg max
s∈Y

exp (w · Φ(x, s))

= arg max
s∈Y

w · Φ(x, s)

= arg max
s∈Y

w ·
m

∑

j=1

φ(x, j, sj−1, sj)

= arg max
s∈Y

m
∑

j=1

w · φ(x, j, sj−1, sj)

! Again, we can use the Viterbi algorithm...

The Viterbi Algorithm for CRFs

! Initialization: for s ∈ S

π[1, s] = w · φ(x, 1, s0, s)

where s0 is a special “initial” state.

! For j = 2 . . .m, s = 1 . . . k:

π[j, s] = max
s′∈S

[

π[j − 1, s′] + w · φ(x, j, s′, s)
]

! We then have

max
s1...sm

m
∑

j=1

w · φ(x, j, sj−1, sj) = max
s

π[m, s]

! The algorithm runs in O(mk2) time. As before (see HMM
lecture slides), we can use backpointers to recover the most
likely sequence of states.

Parameter Estimation in CRFs
! To estimate the parameters, we assume we have a set of n

labeled examples, {(xi, si)}n
i=1. Each xi is an input sequence

xi
1
. . . xi

m, each si is a state sequence si
1
. . . si

m.
! We then proceed in exactly the same way as for regular

log-linear models
! The regularized log-likelihood function is

L(w) =
n

∑

i=1

log p(si|xi; w) −
λ

2
||w||2

! Our parameter estimates are

w∗ = arg max
w∈Rd

n
∑

i=1

log p(si|xi; w) −
λ

2
||w||2

! We find the optimal parameters using gradient-based methods

The Structured Perceptron
! Input: labeled examples, {(xi, si)}n

i=1
.

! Initialization: w = 0

! For t = 1 . . . T , for i = 1 . . . n:

! Use the Viterbi algorithm to calculate

s∗ = arg max
s∈Y

w·Φ(xi, s) = arg max
s∈Y

m
∑

j=1

w·φ(x, j, sj−1, sj)

! Updates:

w = w + Φ(xi, si) − Φ(xi, s∗)

= w +
m

∑

j=1

φ(x, j, si
j−1, s

i
j) −

m
∑

j=1

φ(x, j, s∗j−1, s
∗
j)

! Return w

The Structured Perceptron with Averaging
! Input: labeled examples, {(xi, si)}n

i=1
.

Initialization: w = 0, wa = 0

! For t = 1 . . . T , for i = 1 . . . n:

! Use the Viterbi algorithm to calculate

s∗ = arg max
s∈Y

w·Φ(xi, s) = arg max
s∈Y

m
∑

j=1

w·φ(x, j, sj−1, sj)

! Updates:

w = w + Φ(xi, si) − Φ(xi, s∗)

= w +
m

∑

j=1

φ(x, j, si
j−1, s

i
j) −

m
∑

j=1

φ(x, j, s∗j−1, s
∗
j)

wa = wa + w

! Return wa/nT

Convergence of the Structured Perceptron
! Definition: The training set {(xi, si)}n

i=1
is separable with

margin δ > 0, if there exists some parameter vector w such
that:

1. ||w||2 = 1
2. For all i = 1 . . . n, for all s1 . . . sm such that sj != si

j for some

j,
w · Φ(xi, si) − w · Φ(xi, s) ≥ δ

! Theorem: if a training set is separable with margin δ, the
structured perceptron makes at most

R2

δ2

mistakes before convergence, where R is related to the norm
of the feature vectors Φ(xi, s)

Lecture 4, COMS E6998-3:
Pairwise CRFs

Michael Collins

February 9, 2011

Conditional Random Fields (CRFs)

! Notation: for convenience we’ll use x to refer to the sequence
of input words, x1 . . . xm, and s to refer to a sequence of
possible states, s1 . . . sm. The set of possible states is S. We
use Sm to refer to the set of all possible state sequences (we
have |Sm| = |S|m).

! We’re again going to build a model of

p(s1 . . . sm|x1 . . . xm) = p(s|x)

CRFs

! We use Φ(x, s) ∈ Rd to refer to a feature vector for an entire
state sequence

! We then build a giant log-linear model,

p(s|x; w) =
exp (w · Φ(x, s))∑

s′∈Sm exp (w · Φ(x, s′))

! The model is “giant” in the sense that: 1) the space of
possible values for s, i.e., Sm, is huge. 2) The normalization
constant (denominator in the above expression) involves a sum
over a huge number of possibilities (i.e., all members of Sm).

CRFs (continued)

p(s|x; w) =
exp (w · Φ(x, s))∑

s′∈Sm exp (w · Φ(x, s′))

! We assume that we have a graph with nodes
V = {1, 2, . . . , m}, and a set of undirected edges E

! How do we define Φ(x, s)? Answer:

Φ(x, s) =
∑

(j,k)∈E

φ(x, j, k, sj, sk)

Decoding with CRFs

! The decoding problem: find

arg max
s∈Sm

p(s|x; w) = arg max
s∈Sm

exp (w · Φ(x, s))∑
s′∈Sm exp (w · Φ(x, s′))

= arg max
s∈Sm

exp (w · Φ(x, s))

= arg max
s∈Sm

w · Φ(x, s)

= arg max
s∈Sm

w ·
∑

(j,k)∈E

φ(x, j, k, sj , sk)

= arg max
s∈Sm

∑

(j,k)∈E

θ(j, k, sj , sk)

where
θ(j, k, sj , sk) = w · φ(x, j, k, sj, sk)

Parameter Estimation in CRFs

! To estimate the parameters, we assume we have a set of n

labeled examples, {(xi, si)}n
i=1. Each xi is an input sequence

xi
1 . . . xi

m, each si is a state sequence si
1 . . . si

m.

! We then proceed in exactly the same way as for regular
log-linear models

! The regularized log-likelihood function is

L(w) =
n∑

i=1

log p(si|xi; w) −
λ

2
||w||2

! Our parameter estimates are

w∗ = arg max
w∈Rd

n∑

i=1

log p(si|xi; w) −
λ

2
||w||2

Finding the Maximum-Likelihood Estimates

! We’ll again use gradient-based optimization methods to find
w∗

! How can we compute the derivatives? As before,

∂

∂wl
L(w) =

∑

i

Φl(x
i, si) −

∑

i

∑

s∈Sm

p(s|xi;w)Φl(x
i, s) − λwl

! The first term is easily computed, because

∑

i

Φl(x
i, si) =

∑

i

∑

(j,k)∈E

φl(x
i, j, k, si

j, s
i
k)

! The second term involves a sum over Sm, and because of this
looks nasty...

Calculating Derivatives using the
Forward-Backward Algorithm

! We now consider how to compute the second term:

∑

s∈Sm

p(s|xi;w)Φl(x
i, s) =

∑

s∈Sm

p(s|xi;w)
∑

(j,k)∈E

φl(x
i, j, k, sj , sk)

=
∑

(j,k)∈E

∑

a∈S,b∈S

qi
j,k(a, b)φl(x

i, j, k, a, b)

where

qi
j,k(a, b) =

∑

s∈Sm:sj=a,sk=b

p(s|xi;w)

Lecture 4: Belief Propagation

Michael Collins

February 9, 2011

The Model Form for Markov Random Fields

! Model form for a pairwise MRF

p(x1, x2, . . . xn; Θ) =
1

Z(θ)
exp{

∑

(i,j)∈E

θi,j(xi, xj)}

=
1

Z(θ)

∏

(i,j)∈E

ψi,j(xi, xj)

where

! E is the set of edges in the undirected graph

! ψi,j(xi, xj) = exp{θi,j(xi, xj)}

! Z(θ) =
∑

x1...xn

∏
(i,j)∈E ψi,j(xi, xj)

Two Key Problems
! (1) Computing the partition function,

Z(θ) =
∑

x1...xn

∏

(i,j)∈E

ψi,j(xi, xj)

! (2) Computing marginal probabilities under the model,

P (Xi = x; θ)

for any random variable Xi, for any value x. e.g.,
P (X7 = +1; θ)

! Note:

P (Xi = x; θ) =
1

Z(θ)

∑

x1...xn

δ(xi, x)
∏

(i,j)∈E

ψi,j(xi, xj)

where δ(xi, x) = 1 if xi = x, 0 otherwise

Tree-Structured MRFs
! In this lecture, we’ll consider the case where the underlying

graph is a tree (easy case: dynamic programming)
! First step: pick one of the vertices in the tree as a root (any

node will do). In this example, we pick node 11:

9

11

10

7 8
5 6

1 2 3 4

Tree-Structured MRFs
! In a first step, we’ll send “messages” up through the tree

! The messages basically correspond to bottom-up dynamic
programming

9

11

10

7 8
5 6

1 2 3 4

Computing the Partition Function
For each possible value of x7, calculate

m1→7(x7) =
∑

x1

ψ1,7(x1, x7)

m1→7(x7) is a “message” from node 1 to node 7 about the
possible value x7 for node 7.
Similarly, calculate

m2→7(x7) =
∑

x2

ψ2,7(x2, x7) m3→8(x8) =
∑

x3

ψ3,8(x3, x8)

m4→8(x8) =
∑

x4

ψ4,8(x4, x8) m5→10(x10) =
∑

x5

ψ5,10(x5, x10)

m6→10(x10) =
∑

x6

ψ6,10(x6, x10)

The General Form for the Messages

! For any node i, define N(i) to be the set of neighbors of i in
the graph:

N(i) = {j : (i, j) ∈ E}

! The messages are then defined as

mi→j(xj) =
∑

xi

ψi,j(xi, xj)
∏

k∈N(i),k #=j

mk→i(xi)

! Note: special case, if N(i) = {j}, then message is

mi→j(xj) =
∑

xi

ψi,j(xi, xj)

Computing the Partition Function
Next, calculate

m7→9(x9) =
∑

x7

ψ7,9(x7, x9)m1→7(x7)m2→7(x7)

m8→9(x9) =
∑

x8

ψ8,9(x8, x9)m3→8(x8)m4→8(x8)

m9→11(x11) =
∑

x9

ψ9,11(x9, x11)m7→9(x9)m8→9(x9)

m10→11(x11) =
∑

x10

ψ10,11(x10, x11)m5→10(x10)m6→10(x10)

And finally,

Z(θ) =
∑

x11

m9→11(x11)m10→11(x11)

What do the Messages Represent?
! An example: m9→11(x11)

! Take T (9, 11) to be the following subtree:

9

11

7 8

1 2 3 4

The subtree contains the edge (9, 11), together with the subtree
rooted at node 9 that is the component when the edge (9, 11) is
removed from the graph

! Then m9→11(x11) =
∑

x1,x2,x3,x4,x7,x8,x9

∏
(i,j)∈T (9,11) ψi,j(xi, xj)

Two Key Problems
! (1) Computing the partition function,

Z(θ) =
∑

x1...xn

∏

(i,j)∈E

ψi,j(xi, xj)

! (2) Computing marginal probabilities under the model,

P (Xi = x; θ)

for any random variable Xi, for any value x. e.g.,
P (X7 = +1; θ)

! Note:

P (Xi = x; θ) =
1

Z(θ)

∑

x1...xn

δ(xi, x)
∏

(i,j)∈E

ψi,j(xi, xj)

where δ(xi, x) = 1 if xi = x, 0 otherwise

Belief Propagation (Continued)
! In a second step, we’ll send “messages” down the tree

9

11

10

7 8
5 6

1 2 3 4

! We use the same definition as before,

mi→j(xj) =
∑

xi

ψi,j(xi, xj)
∏

k∈N(i),k #=j

mk→i(xi)

Downward Messages

m11→9(x9) =
∑

x11

ψ11,9(x11, x9)m10→11(x11)

m11→10(x10) =
∑

x11

ψ11,10(x11, x10)m9→11(x11)

m9→7(x7) =
∑

x9

ψ9,7(x9, x7)m11→9(x9)m8→9(x9)

m9→8(x8) =
∑

x9

ψ9,8(x9, x8)m11→9(x9)m7→9(x9)

and so on, until all the downward messages are computed

Computing Marginals

! Once we have all the messages, we can easily compute
marginals

! For example,

P (X9 = +1; θ) =
1

Z(θ)
m7→9(+1)m8→9(+1)m11→9(+1)

! The general form:

P (Xi = x; θ) =
1

Z(θ)

∏

j∈N(i)

mj→i(x)

where N(i) = {j : (i, j) ∈ E}

Summary
! We choose one node of the tree as the root (in our example, we

chose node 11)

! First compute messages mi→j(xj) bottom-up in the tree

! Then compute messages top-down through the tree: at this point
we have messages between all pairs of nodes, in both directions

! We can then take the root messages, and calculate the partition
function, e.g., Z(θ) =

∑
x11

m9→11(x11)m10→11(x11)

! And we can also compute the full set of marginal probabilities

P (Xi = x; θ) =
1

Z(θ)

∏

j∈N(i)

mj→i(x)

What do the Messages Represent?
! A second example: m11→9(x9)

! Take T (11, 9) to be the following subtree:

9

11

10

5 6

The subtree contains the edge (11, 9), together with the subtree
rooted at node 11 that is the component when the edge (11, 9) is
removed from the graph

! Then m11→9(x9) =
∑

x5,x6,x10,x11

∏
(i,j)∈T (11,9) ψi,j(xi, xj)

Finding the Maximum
! How do we find maxx1...xn

∏
(i,j)∈E ψi,j(xi, xj) ?

! For any node i, define N(i) to be the set of neighbors of i in the
graph:

N(i) = {j : (i, j) ∈ E}

! The messages are then defined as

mi→j(xj) = max
xi

ψi,j(xi, xj)
∏

k∈N(i),k #=j

mk→i(xi)

! Note: special case, if N(i) = {j}, then message is
mi→j(xj) = maxxi ψi,j(xi, xj)

! And finally (for our example), the maximum scoring assignment is

max
x11

m9→11(x11)m10→11(x11)

Hidden Markov Models (HMMs)
! In HMMs, we assume that:

P (X1 = x1, . . . , Xm = xm, S1 = s1, . . . , Sm = sm)

= P (S1 = s1)
m∏

j=2

P (Sj = sj|Sj−1 = sj−1)
m∏

j=1

P (Xj = xj|Sj = sj)

! A Bayesian network representing the HMM (assume m = 5):

S1 S2 S3 S4 S5

X1 X2 X3 X4 X5

! If we run belief propogation on this Bayesian network, we
recover the forward-backward algorithm

