
Lecture 10: Discriminative Training for MT/

the Brown et al. Word Clustering Algorithm

Michael Collins

April 6, 2011

Discriminative Training for MT

I Our original model:

f(y) = h(e(y)) +
L∑

k=1

g(pk) +
L−1∑
k=1

η × δ(t(pk), s(pk+1))

I A discriminative model for translation (Liang et al., 2006):

f(y;w, α, η) = α×h(e(y))+
L∑

k=1

w·φ(pk)+
L−1∑
k=1

η×δ(t(pk), s(pk+1))

Here α ∈ R, η ∈ R and w ∈ Rd are the parameters of the
model

I Crucial idea: φ(p) is a feature-vector representation of a
phrase p

The Learning Set-up

I Our training data consists of (x(i), e(i)) pairs, for i = 1 . . . n,
where x(i) is a source language sentence, and e(i) is a target
language sentence

I We use Y(i) to denote the set of possible derivations for x(i)

I A complication: for a given (x(i), e(i)) pair, there may be many
derivations y ∈ Y(i) such that e(y) = e(i).

A “Bold Updating” Algorithm from Liang et al.

I Initialization: set w = 0, α = 1, η = −1

I for t = 1 . . . T , for i = 1 . . . n,

I y∗ = arg maxy∈Y(i):e(y)=e(i) f(y;w,α, η)

I z∗ = arg maxz∈Y(i) f(z;w,α, η)

I For any phrase p ∈ y∗, w = w + φ(p)

I For any phrase p ∈ z∗, w = w − φ(p)

I Set α = α+ h(e(y∗))− h(e(z∗))

I Set η = η + . . .− . . .

A “Local Updating” Algorithm from Liang et al.
I Initialization: set w = 0, α = 1, η = −1

I for t = 1 . . . T , for i = 1 . . . n,
I Define N i to be the k highest scoring translations in Y(i)

under f(y;w,α, η) (easy to generate N i using k-best search)

I y∗ is member of N i that is “closest” to e(i).

I z∗ = arg maxz∈Y(i) f(z;w,α, η)

I For any phrase p ∈ y∗, w = w + φ(p)

I For any phrase p ∈ z∗, w = w − φ(p)

I Set α = α+ h(e(y∗))− h(e(z∗))

I Set η = η + . . .− . . .

The Brown Clustering Algorithm

I Input: a (large) corpus of words

I Output 1: a partition of words into word clusters

I Output 2 (generalization of 1): a hierarchichal word clustering

Example Clusters (from Brown et al, 1992)
Peter F. Brown and Vincent J. Della Pietra Class-Based n-gram Models of Natural Language

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August
people guys folks fellows CEOs chaps doubters commies unfortunates blokes
down backwards ashore sideways southward northward overboard aloft downwards adrift
water gas coal liquid acid sand carbon steam shale iron
great big vast sudden mere sheer gigantic lifelong scant colossal
man woman boy girl lawyer doctor guy farmer teacher citizen
American Indian European Japanese German African Catholic Israeli Italian Arab
pressure temperature permeability density porosity stress velocity viscosity gravity tension
mother wife father son husband brother daughter sister boss uncle
machine device controller processor CPU printer spindle subsystem compiler plotter
John George James Bob Robert Paul William Jim David Mike
anyone someone anybody somebody
feet miles pounds degrees inches barrels tons acres meters bytes
director chief professor commissioner commander treasurer founder superintendent dean cus-
todian
liberal conservative parliamentary royal progressive Tory provisional separatist federalist PQ
had hadn't hath would've could've should've must've might've
asking telling wondering instructing informing kidding reminding bc)thering thanking deposing
that tha theat
head body hands eyes voice arm seat eye hair mouth

Table 2
Classes from a 260,741-word vocabulary.

we include no more than the ten most frequent words of any class (the other two
months would appear with the class of months if we extended this limit to twelve).
The degree to which the classes capture both syntactic and semantic aspects of English
is quite surprising given that they were constructed from nothing more than counts
of bigrams. The class {that tha theat} is interesting because although tha and theat are
not English words, the computer has discovered that in our data each of them is most
often a mistyped that.

Table 4 shows the number of class 1-, 2-, and 3-grams occurring in the text with
various frequencies. We can expect from these data that maximum likelihood estimates
will assign a probability of 0 to about 3.8 percent of the class 3-grams and to about
.02 percent of the class 2-grams in a new sample of English text. This is a substantial
improvement over the corresponding numbers for a 3-gram language model, which
are 14.7 percent for word 3-grams and 2.2 percent for word 2-grams, but we have
achieved this at the expense of precision in the model. With a class model, we distin-
guish between two different words of the same class only according to their relative
frequencies in the text as a whole. Looking at the classes in Tables 2 and 3, we feel that

475

A Sample Hierarchy (from Miller et al., NAACL

2004)

3 Discriminative Name Tagger

To implement discriminative training, we followed the
averaged perceptron approach of (Collins, 2002). Our
decision was based on three criteria. First, the method
performed nearly as well as the currently best global
discriminative model (Sha and Pereira, 2003), as
evaluated on one of the few tasks for which there are
any published results (noun phrase chunking). Second,
convergence rates appeared favorable, which would
facilitate multiple experiments. Finally, and most
important, the method appeared far simpler to
implement than any of the alternatives.

We implemented the averaged perceptron training

algorithm exactly as described by Collins. However,
we did not implement cross-validation to determine
when to stop training. Instead, we simply iterated for 5
epochs in all cases, regardless of the training set size or
number of features used. Furthermore, we did not
implement features that occurred in no training
instances, as was done in (Sha and Pereira, 2003). We
suspect that these simplifications may have cost several
tenths of a point in performance.

A set of 16 tags was used to tag 8 name classes (the
seven MUC classes plus the additional null class). Two
tags were required per class to account for adjacent
elements of the same type. For example, the string
Betty Mary and Bobby Lou would be tagged as
PERSON-START PERSON-START NULL-START
PERSON-START PERSON-CONTINUE.

Our model uses a total of 19 classes of features. The
first seven of these correspond closely to features used
in a typical HMM name tagger. The remaining twelve
encode cluster membership. Clusters of various
granularity are specified by prefixes of the bit strings.
Short prefixes specify short paths from the root node
and therefore large clusters. Long prefixes specify long
paths and small clusters. We used 4 different prefix
lengths: 8 bit, 12 bit, 16 bit, and 20 bit. Thus, the
clusters decrease in size by about a factor of 16 at each
level. The complete set of features is given in Table 2.

4 Active Learning

We used only a rudimentary confidence measure to

lawyer 1000001101000
newspaperman 100000110100100
stewardess 100000110100101
toxicologist 10000011010011
slang 1000001101010
babysitter 100000110101100
conspirator 1000001101011010
womanizer 1000001101011011
mailman 10000011010111
salesman 100000110110000
bookkeeper 1000001101100010
troubleshooter 10000011011000110
bouncer 10000011011000111
technician 1000001101100100
janitor 1000001101100101
saleswoman 1000001101100110
...
Nike 1011011100100101011100
Maytag 10110111001001010111010
Generali 10110111001001010111011
Gap 1011011100100101011110
Harley-Davidson 10110111001001010111110
Enfield 101101110010010101111110
genus 101101110010010101111111
Microsoft 10110111001001011000
Ventritex 101101110010010110010
Tractebel 1011011100100101100110
Synopsys 1011011100100101100111
WordPerfect 1011011100100101101000
....
John 101110010000000000
Consuelo 101110010000000001
Jeffrey 101110010000000010
Kenneth 10111001000000001100
Phillip 101110010000000011010
WILLIAM 101110010000000011011
Timothy 10111001000000001110
Terrence 101110010000000011110
Jerald 101110010000000011111
Harold 101110010000000100
Frederic 101110010000000101
Wendell 10111001000000011

Table 1: Sample bit strings

1. Tag + PrevTag
2. Tag + CurWord
3. Tag + CapAndNumFeatureOfCurWord
4. ReducedTag + CurWord

 //collapse start and continue tags
5. Tag + PrevWord
6. Tag + NextWord
7. Tag + DownCaseCurWord
8. Tag + Pref8ofCurrWord
9. Tag + Pref12ofCurrWord
10. Tag + Pref16ofCurrWord
11. Tag + Pref20ofCurrWord
12. Tag + Pref8ofPrevWord
13. Tag + Pref12ofPrevWord
14. Tag + Pref16ofPrevWord
15. Tag + Pref20ofPrevWord
16. Tag + Pref8ofNextWord
17. Tag + Pref12ofNextWord
18. Tag + Pref16ofNextWord
19. Tag + Pref20ofNextWord

Table 2: Feature Set

The Formulation
I V is the set of all words seen in the corpus w1, w2, . . . wT

I Say n(w, v) is the number of times that word w precedes v in
our corpus. n(w) is the number of times we see word w.

I Say C : V → {1, 2, . . . k} is a partition of the vocabulary into
k classes

I The model:

p(w1, w2, . . . wT) =
n∏

i=1

p(wi|C(wi))p(C(wi)|C(wi−1))

(note: C(w0) is a special start state)

I More conveniently:

log p(w1, w2, . . . wT) =
n∑

i=1

log p(wi|C(wi))p(C(wi)|C(wi−1))

Measuring the Quality of C
I How do we measure the quality of a partition C?

(Taken from Percy Liang, MENG thesis, MIT, 2005):

Quality(C) =
1

n
log P (w1, . . . , wn) (4.1)

=
1

n
log P (w1, . . . , wn, C(w1), . . . , C(wn)) (4.2)

=
1

n
log

n∏
i=1

P (C(wi)|C(wi−1))P (wi|C(wi)) (4.3)

Equation 4.2 follows from the fact that C is a deterministic mapping. Equation 4.3

follows from the definition of the model. As a technicality, we assume that C(w0) is

a special START cluster.

We now rewrite Equation 4.1 in terms of the mutual information between adjacent

clusters. First, let us define some quantities. Let n(w) be the number of times word

w appears in the text and n(w, w′) be the number of times the bigram (w, w′) occurs

in the text. Similarly, we define n(c) =
∑

w∈c n(w) to be number of times a word

in cluster c appears in the text, and define n(c, c′) =
∑

w∈c,w′∈c′ n(w, w′) analogously.

Also, recall n is simply the length of the text.

Quality(C) =
1

n

n∑
i=1

log P (C(wi)|C(wi−1))P (wi|C(wi))

=
∑
w,w′

n(w, w′)
n

log P (C(w′)|C(w))P (w′|C(w′))

=
∑
w,w′

n(w, w′)
n

log
n(C(w), C(w′))

n(C(w))

n(w′)
n(C(w′))

=
∑
w,w′

n(w, w′)
n

log
n(C(w), C(w′))n
n(C(w))n(C(w′))

+
∑
w,w′

n(w, w′)
n

log
n(w′)

n

=
∑
c,c′

n(c, c′)
n

log
n(c, c′)n
n(c)n(c′)

+
∑
w′

n(w′)
n

log
n(w′)

n

We use the counts n(·) to define empirical distributions over words, clusters, and

pairs of clusters, so that P (w) = n(w)
n

, P (c) = n(c)
n

, and P (c, c′) = n(c,c′)
n

. Then the

quality of a clustering can be rewritten as follows:

45

The Final Equation
I Define

P (c, c′) =
n(c, c′)
n

P (w) =
n(w)

n
P (c) =

n(c)

n
I Then (again from Percy Liang, 2005):

Quality(C) =
∑
c,c′

P (c, c′) log
P (c, c′)

P (c)P (c′)
+

∑
w

P (w) logP (w)

= I(C) − H

The first term I(C) is the mutual information between adjacent clusters and the

second term H is the entropy of the word distribution. Note that the quality of C

can be computed as a sum of mutual information weights between clusters minus the

constant H , which does not depend on C. This decomposition allows us to make

optimizations.

Optimization by precomputation

Suppose we want to cluster k different word types. A näıve algorithm would do the

following: for each of O(k) iterations, and for each of the possible O(k2) possible pairs

of clusters to merge, evaluate the quality of the resulting clustering. This evaluation

involves a sum over O(k2) terms, so the entire algorithm runs in O(k5) time.

Since we want to be able to cluster hundreds of thousands of words, the näıve

algorithm is not practical. Fortunately, (Brown et al., 1992) presents an optimization

that reduces the time from O(k5) to O(k3). The optimized algorithm maintains

a table containing the change in clustering quality due to each of the O(k2) merges

(Brown et al., 1992). With the table, picking the best merge takes O(k2) time instead

of O(k4) time. We will show that the table can be updated after a merge in O(k2)

time.

Instead of presenting the optimized algorithm algebraically (Brown et al., 1992),

we present the algorithm graphically, which we hope provides more intuition. Let a

clustering be represented by an undirected graph with k nodes, where the nodes are

the clusters and an edge connects any two nodes (clusters) that are ever adjacent to

each other in either order in the text. Note there might be self-loops in the graph.

Let the weight of an edge be defined as in Equation 4.4 (see below). One can verify

that the total graph weight (the sum over all edge weights) is exactly the mutual

46

A First Algorithm

I We start with |V| clusters: each word gets its own cluster

I Our aim is to find k final clusters

I We run |V| − k merge steps:

I At each merge step we pick two clusters ci and cj , and merge
them into a single cluster

I We greedily pick merges such that

Quality(C)

for the clustering C after the merge step is maximized at
each stage

I Cost? Naive = O(|V|5). Improved algorithm gives O(|V|3):
still two slow for realistic values of |V|

A Second Algorithm

I Parameter of the approach is m (e.g., m = 1000)

I Take the top m most frequent words, put each into its own
cluster, c1, c2, . . . cm

I For i = (m+ 1) . . . |V|
I Create a new cluster, cm+1, for the i’th most frequent word.

We now have m+ 1 clusters
I Choose two clusters from c1 . . . cm+1 to be merged: pick the

merge that gives a maximum value for Quality(C). We’re
now back to m clusters

I Carry out (m− 1) final merges, to create a full hierarchy

Running time: O(|V|m2 + n) where n is corpus length

Miller et al, NAACL 2004

Name Tagging with Word Clusters and Discriminative Training

Scott Miller, Jethran Guinness, Alex Zamanian
BBN Technologies
10 Moulton Street

Cambridge, MA 02138
szmiller@bbn.com

Abstract

We present a technique for augmenting
annotated training data with hierarchical word
clusters that are automatically derived from a
large unannotated corpus. Cluster
membership is encoded in features that are
incorporated in a discriminatively trained
tagging model. Active learning is used to
select training examples. We evaluate the
technique for named-entity tagging.
Compared with a state-of-the-art HMM-based
name finder, the presented technique requires
only 13% as much annotated data to achieve
the same level of performance. Given a large
annotated training set of 1,000,000 words, the
technique achieves a 25% reduction in error
over the state-of-the-art HMM trained on the
same material.

1 Introduction

At a recent meeting, we presented name-tagging
technology to a potential user. The technology had
performed well in formal evaluations, had been applied
successfully by several research groups, and required
only annotated training examples to configure for new
name classes. Nevertheless, it did not meet the user's
needs.

To achieve reasonable performance, the HMM-based
technology we presented required roughly 150,000
words of annotated examples, and over a million words
to achieve peak accuracy. Given a typical annotation
rate of 5,000 words per hour, we estimated that setting
up a name finder for a new problem would take four
person days of annotation work – a period we

considered reasonable. However, this user's problems
were too dynamic for that much setup time. To be
useful, the system would have to be trainable in
minutes or hours, not days or weeks.

We left the meeting thinking about ways to reduce
training requirements to no more than a few hours. It
seemed that three existing ideas could be combined in a
way that might reduce training requirements
sufficiently to achieve the objective.

First were techniques for producing word clusters from
large unannotated corpora (Brown et al., 1990; Pereira
et al., 1993; Lee and Pereira, 1999). The resulting
clusters appeared to contain a great deal of implicit
semantic information. This implicit information, we
believed, could serve to augment a small amount of
annotated data. Particularly promising were techniques
for producing hierarchical clusters at various scales,
from small and highly specific to large and more
general. To benefit from such information, however,
we would need an automatic learning mechanism that
could effectively exploit it.

Fortunately, a second line of recent research provided a
potential solution. Recent work in discriminative
methods (Lafferty et al., 2001; Sha and Pereira, 2003,
Collins 2002) suggested a framework for exploiting
large numbers of arbitrary input features. These
methods seemed to have exactly the right
c h a r a c t e r i s t i c s fo r i n c or p o r a t i n g t h e
statistically-correlated hierarchical word clusters we
wished to exploit.

Combining these two methods, we suspected, would be
sufficient to drastically reduce the number of annotated
examples required. However, we also hoped that a
third technique, active learning (Cohn et al., 1996;

Miller et al, NAACL 2004

Name Tagging with Word Clusters and Discriminative Training

Scott Miller, Jethran Guinness, Alex Zamanian
BBN Technologies
10 Moulton Street

Cambridge, MA 02138
szmiller@bbn.com

Abstract

We present a technique for augmenting
annotated training data with hierarchical word
clusters that are automatically derived from a
large unannotated corpus. Cluster
membership is encoded in features that are
incorporated in a discriminatively trained
tagging model. Active learning is used to
select training examples. We evaluate the
technique for named-entity tagging.
Compared with a state-of-the-art HMM-based
name finder, the presented technique requires
only 13% as much annotated data to achieve
the same level of performance. Given a large
annotated training set of 1,000,000 words, the
technique achieves a 25% reduction in error
over the state-of-the-art HMM trained on the
same material.

1 Introduction

At a recent meeting, we presented name-tagging
technology to a potential user. The technology had
performed well in formal evaluations, had been applied
successfully by several research groups, and required
only annotated training examples to configure for new
name classes. Nevertheless, it did not meet the user's
needs.

To achieve reasonable performance, the HMM-based
technology we presented required roughly 150,000
words of annotated examples, and over a million words
to achieve peak accuracy. Given a typical annotation
rate of 5,000 words per hour, we estimated that setting
up a name finder for a new problem would take four
person days of annotation work – a period we

considered reasonable. However, this user's problems
were too dynamic for that much setup time. To be
useful, the system would have to be trainable in
minutes or hours, not days or weeks.

We left the meeting thinking about ways to reduce
training requirements to no more than a few hours. It
seemed that three existing ideas could be combined in a
way that might reduce training requirements
sufficiently to achieve the objective.

First were techniques for producing word clusters from
large unannotated corpora (Brown et al., 1990; Pereira
et al., 1993; Lee and Pereira, 1999). The resulting
clusters appeared to contain a great deal of implicit
semantic information. This implicit information, we
believed, could serve to augment a small amount of
annotated data. Particularly promising were techniques
for producing hierarchical clusters at various scales,
from small and highly specific to large and more
general. To benefit from such information, however,
we would need an automatic learning mechanism that
could effectively exploit it.

Fortunately, a second line of recent research provided a
potential solution. Recent work in discriminative
methods (Lafferty et al., 2001; Sha and Pereira, 2003,
Collins 2002) suggested a framework for exploiting
large numbers of arbitrary input features. These
methods seemed to have exactly the right
c h a r a c t e r i s t i c s fo r i n c or p o r a t i n g t h e
statistically-correlated hierarchical word clusters we
wished to exploit.

Combining these two methods, we suspected, would be
sufficient to drastically reduce the number of annotated
examples required. However, we also hoped that a
third technique, active learning (Cohn et al., 1996;

Miller et al, NAACL 2004

Name Tagging with Word Clusters and Discriminative Training

Scott Miller, Jethran Guinness, Alex Zamanian
BBN Technologies
10 Moulton Street

Cambridge, MA 02138
szmiller@bbn.com

Abstract

We present a technique for augmenting
annotated training data with hierarchical word
clusters that are automatically derived from a
large unannotated corpus. Cluster
membership is encoded in features that are
incorporated in a discriminatively trained
tagging model. Active learning is used to
select training examples. We evaluate the
technique for named-entity tagging.
Compared with a state-of-the-art HMM-based
name finder, the presented technique requires
only 13% as much annotated data to achieve
the same level of performance. Given a large
annotated training set of 1,000,000 words, the
technique achieves a 25% reduction in error
over the state-of-the-art HMM trained on the
same material.

1 Introduction

At a recent meeting, we presented name-tagging
technology to a potential user. The technology had
performed well in formal evaluations, had been applied
successfully by several research groups, and required
only annotated training examples to configure for new
name classes. Nevertheless, it did not meet the user's
needs.

To achieve reasonable performance, the HMM-based
technology we presented required roughly 150,000
words of annotated examples, and over a million words
to achieve peak accuracy. Given a typical annotation
rate of 5,000 words per hour, we estimated that setting
up a name finder for a new problem would take four
person days of annotation work – a period we

considered reasonable. However, this user's problems
were too dynamic for that much setup time. To be
useful, the system would have to be trainable in
minutes or hours, not days or weeks.

We left the meeting thinking about ways to reduce
training requirements to no more than a few hours. It
seemed that three existing ideas could be combined in a
way that might reduce training requirements
sufficiently to achieve the objective.

First were techniques for producing word clusters from
large unannotated corpora (Brown et al., 1990; Pereira
et al., 1993; Lee and Pereira, 1999). The resulting
clusters appeared to contain a great deal of implicit
semantic information. This implicit information, we
believed, could serve to augment a small amount of
annotated data. Particularly promising were techniques
for producing hierarchical clusters at various scales,
from small and highly specific to large and more
general. To benefit from such information, however,
we would need an automatic learning mechanism that
could effectively exploit it.

Fortunately, a second line of recent research provided a
potential solution. Recent work in discriminative
methods (Lafferty et al., 2001; Sha and Pereira, 2003,
Collins 2002) suggested a framework for exploiting
large numbers of arbitrary input features. These
methods seemed to have exactly the right
c h a r a c t e r i s t i c s fo r i n c or p o r a t i n g t h e
statistically-correlated hierarchical word clusters we
wished to exploit.

Combining these two methods, we suspected, would be
sufficient to drastically reduce the number of annotated
examples required. However, we also hoped that a
third technique, active learning (Cohn et al., 1996;

Name Tagging with Word Clusters and Discriminative Training

Scott Miller, Jethran Guinness, Alex Zamanian
BBN Technologies
10 Moulton Street

Cambridge, MA 02138
szmiller@bbn.com

Abstract

We present a technique for augmenting
annotated training data with hierarchical word
clusters that are automatically derived from a
large unannotated corpus. Cluster
membership is encoded in features that are
incorporated in a discriminatively trained
tagging model. Active learning is used to
select training examples. We evaluate the
technique for named-entity tagging.
Compared with a state-of-the-art HMM-based
name finder, the presented technique requires
only 13% as much annotated data to achieve
the same level of performance. Given a large
annotated training set of 1,000,000 words, the
technique achieves a 25% reduction in error
over the state-of-the-art HMM trained on the
same material.

1 Introduction

At a recent meeting, we presented name-tagging
technology to a potential user. The technology had
performed well in formal evaluations, had been applied
successfully by several research groups, and required
only annotated training examples to configure for new
name classes. Nevertheless, it did not meet the user's
needs.

To achieve reasonable performance, the HMM-based
technology we presented required roughly 150,000
words of annotated examples, and over a million words
to achieve peak accuracy. Given a typical annotation
rate of 5,000 words per hour, we estimated that setting
up a name finder for a new problem would take four
person days of annotation work – a period we

considered reasonable. However, this user's problems
were too dynamic for that much setup time. To be
useful, the system would have to be trainable in
minutes or hours, not days or weeks.

We left the meeting thinking about ways to reduce
training requirements to no more than a few hours. It
seemed that three existing ideas could be combined in a
way that might reduce training requirements
sufficiently to achieve the objective.

First were techniques for producing word clusters from
large unannotated corpora (Brown et al., 1990; Pereira
et al., 1993; Lee and Pereira, 1999). The resulting
clusters appeared to contain a great deal of implicit
semantic information. This implicit information, we
believed, could serve to augment a small amount of
annotated data. Particularly promising were techniques
for producing hierarchical clusters at various scales,
from small and highly specific to large and more
general. To benefit from such information, however,
we would need an automatic learning mechanism that
could effectively exploit it.

Fortunately, a second line of recent research provided a
potential solution. Recent work in discriminative
methods (Lafferty et al., 2001; Sha and Pereira, 2003,
Collins 2002) suggested a framework for exploiting
large numbers of arbitrary input features. These
methods seemed to have exactly the right
c h a r a c t e r i s t i c s fo r i n c o r p o r a t i n g t h e
statistically-correlated hierarchical word clusters we
wished to exploit.

Combining these two methods, we suspected, would be
sufficient to drastically reduce the number of annotated
examples required. However, we also hoped that a
third technique, active learning (Cohn et al., 1996;

Miller et al, NAACL 2004

3 Discriminative Name Tagger

To implement discriminative training, we followed the
averaged perceptron approach of (Collins, 2002). Our
decision was based on three criteria. First, the method
performed nearly as well as the currently best global
discriminative model (Sha and Pereira, 2003), as
evaluated on one of the few tasks for which there are
any published results (noun phrase chunking). Second,
convergence rates appeared favorable, which would
facilitate multiple experiments. Finally, and most
important, the method appeared far simpler to
implement than any of the alternatives.

We implemented the averaged perceptron training

algorithm exactly as described by Collins. However,
we did not implement cross-validation to determine
when to stop training. Instead, we simply iterated for 5
epochs in all cases, regardless of the training set size or
number of features used. Furthermore, we did not
implement features that occurred in no training
instances, as was done in (Sha and Pereira, 2003). We
suspect that these simplifications may have cost several
tenths of a point in performance.

A set of 16 tags was used to tag 8 name classes (the
seven MUC classes plus the additional null class). Two
tags were required per class to account for adjacent
elements of the same type. For example, the string
Betty Mary and Bobby Lou would be tagged as
PERSON-START PERSON-START NULL-START
PERSON-START PERSON-CONTINUE.

Our model uses a total of 19 classes of features. The
first seven of these correspond closely to features used
in a typical HMM name tagger. The remaining twelve
encode cluster membership. Clusters of various
granularity are specified by prefixes of the bit strings.
Short prefixes specify short paths from the root node
and therefore large clusters. Long prefixes specify long
paths and small clusters. We used 4 different prefix
lengths: 8 bit, 12 bit, 16 bit, and 20 bit. Thus, the
clusters decrease in size by about a factor of 16 at each
level. The complete set of features is given in Table 2.

4 Active Learning

We used only a rudimentary confidence measure to

lawyer 1000001101000
newspaperman 100000110100100
stewardess 100000110100101
toxicologist 10000011010011
slang 1000001101010
babysitter 100000110101100
conspirator 1000001101011010
womanizer 1000001101011011
mailman 10000011010111
salesman 100000110110000
bookkeeper 1000001101100010
troubleshooter 10000011011000110
bouncer 10000011011000111
technician 1000001101100100
janitor 1000001101100101
saleswoman 1000001101100110
...
Nike 1011011100100101011100
Maytag 10110111001001010111010
Generali 10110111001001010111011
Gap 1011011100100101011110
Harley-Davidson 10110111001001010111110
Enfield 101101110010010101111110
genus 101101110010010101111111
Microsoft 10110111001001011000
Ventritex 101101110010010110010
Tractebel 1011011100100101100110
Synopsys 1011011100100101100111
WordPerfect 1011011100100101101000
....
John 101110010000000000
Consuelo 101110010000000001
Jeffrey 101110010000000010
Kenneth 10111001000000001100
Phillip 101110010000000011010
WILLIAM 101110010000000011011
Timothy 10111001000000001110
Terrence 101110010000000011110
Jerald 101110010000000011111
Harold 101110010000000100
Frederic 101110010000000101
Wendell 10111001000000011

Table 1: Sample bit strings

1. Tag + PrevTag
2. Tag + CurWord
3. Tag + CapAndNumFeatureOfCurWord
4. ReducedTag + CurWord

 //collapse start and continue tags
5. Tag + PrevWord
6. Tag + NextWord
7. Tag + DownCaseCurWord
8. Tag + Pref8ofCurrWord
9. Tag + Pref12ofCurrWord
10. Tag + Pref16ofCurrWord
11. Tag + Pref20ofCurrWord
12. Tag + Pref8ofPrevWord
13. Tag + Pref12ofPrevWord
14. Tag + Pref16ofPrevWord
15. Tag + Pref20ofPrevWord
16. Tag + Pref8ofNextWord
17. Tag + Pref12ofNextWord
18. Tag + Pref16ofNextWord
19. Tag + Pref20ofNextWord

Table 2: Feature Set

Miller et al, NAACL 2004

Third, we consider the impact of active learning. Figure
3 shows (a) discriminative tagger performance without
cluster features, (b) the same tagger using active
learning, (c) the discriminative tagger with cluster
features, and (d) the discriminative tagger with cluster
features using active learning. Both with and without
clusters, active learning exhibits a noticeable increase in
learning rates. However, the increase in learning rate is
significantly more pronounced when cluster features are
introduced. We attribute this increase to better
confidence measures provided by word clusters – the
system is no longer restricted to whether or not it
knows a word; it now can know something about the
clusters to which a word belongs, even if it does not
know the word.

Finally, Figure 4 shows the impact of consolidating the
gains from both cluster features and active learning
compared to the baseline HMM. This final combination
achieves an F-score of 90 with less than 20,000 words of
training – a quantity that can be annotated in about 4
person hours – compared to 150,000 words for the

HMM – a quantity requiring nearly 4 person days to
annotate. At 1,000,000 word of training, the final
combination continues to exhibit a 25% reduction in
error over the baseline system (because of limitations in
the experimental framework discussed earlier, active
learning can provide no additional gain at this
operating point).

6 Discussion

The work presented here extends a substantial body of
previous work (Blum and Mitchell, 1998; Riloff and
Jones, 1999; Lin et al., 2003; Boschee et al, 2002;
Collins and Singer, 1999; Yarowsky, 1995) that all
focuses on reducing annotation requirements through a
combination of (a) seed examples, (b) large un-
annotated corpora, and (c) training example selection.
Moreover, our work is based largely on existing
techniques for word clustering (Brown et al., 1990),
discriminative training (Collins 2002), and active
learning.

The synthesis of these techniques, nevertheless, proved
highly effective in achieving our primary objective of
reducing the need for annotated data.

Much work remains to be done. In an effort to move
rapidly toward our primary objective, we investigated
only one type of discriminative training (averaged
perceptron), only one type of clustering (bigram mutual
information), and only one simple confidence measure
for active learning. It seems likely that some additional
gains could be realized by alternative discriminative
methods (e.g. conditional random fields estimated with
conjugate-gradient training). Similarly, alternative
clustering techniques, perhaps based on different
contextual features or different distance measures,

50

55

60

65

70

75

80

85

90

95

100

1000 10000 100000 1000000

HMM

Discriminative
+ Clusters

Training Size

F-
M

ea
su

re

Figure 2: Impact of Word Clustering

50

55

60

65

70

75

80

85

90

95

100

1000 10000 100000 1000000

Discriminative

Discriminative
+ Clusters

Training Size

F-
M

ea
su

re

Discriminative + Active

Discriminative +
Clusters + Active

Figure 3: Impact of Active Learning

50

55

60

65

70

75

80

85

90

95

100

1000 10000 100000 1000000

HMM

Training Size
F-

M
ea

su
re

Discriminative +
Clusters + Active

Figure 4: Cumulative Impact of Discriminative
Training, Clustering, and Active Learning

Miller et al, NAACL 2004

Third, we consider the impact of active learning. Figure
3 shows (a) discriminative tagger performance without
cluster features, (b) the same tagger using active
learning, (c) the discriminative tagger with cluster
features, and (d) the discriminative tagger with cluster
features using active learning. Both with and without
clusters, active learning exhibits a noticeable increase in
learning rates. However, the increase in learning rate is
significantly more pronounced when cluster features are
introduced. We attribute this increase to better
confidence measures provided by word clusters – the
system is no longer restricted to whether or not it
knows a word; it now can know something about the
clusters to which a word belongs, even if it does not
know the word.

Finally, Figure 4 shows the impact of consolidating the
gains from both cluster features and active learning
compared to the baseline HMM. This final combination
achieves an F-score of 90 with less than 20,000 words of
training – a quantity that can be annotated in about 4
person hours – compared to 150,000 words for the

HMM – a quantity requiring nearly 4 person days to
annotate. At 1,000,000 word of training, the final
combination continues to exhibit a 25% reduction in
error over the baseline system (because of limitations in
the experimental framework discussed earlier, active
learning can provide no additional gain at this
operating point).

6 Discussion

The work presented here extends a substantial body of
previous work (Blum and Mitchell, 1998; Riloff and
Jones, 1999; Lin et al., 2003; Boschee et al, 2002;
Collins and Singer, 1999; Yarowsky, 1995) that all
focuses on reducing annotation requirements through a
combination of (a) seed examples, (b) large un-
annotated corpora, and (c) training example selection.
Moreover, our work is based largely on existing
techniques for word clustering (Brown et al., 1990),
discriminative training (Collins 2002), and active
learning.

The synthesis of these techniques, nevertheless, proved
highly effective in achieving our primary objective of
reducing the need for annotated data.

Much work remains to be done. In an effort to move
rapidly toward our primary objective, we investigated
only one type of discriminative training (averaged
perceptron), only one type of clustering (bigram mutual
information), and only one simple confidence measure
for active learning. It seems likely that some additional
gains could be realized by alternative discriminative
methods (e.g. conditional random fields estimated with
conjugate-gradient training). Similarly, alternative
clustering techniques, perhaps based on different
contextual features or different distance measures,

50

55

60

65

70

75

80

85

90

95

100

1000 10000 100000 1000000

HMM

Discriminative
+ Clusters

Training Size

F-
M

ea
su

re

Figure 2: Impact of Word Clustering

50

55

60

65

70

75

80

85

90

95

100

1000 10000 100000 1000000

Discriminative

Discriminative
+ Clusters

Training Size

F-
M

ea
su

re

Discriminative + Active

Discriminative +
Clusters + Active

Figure 3: Impact of Active Learning

50

55

60

65

70

75

80

85

90

95

100

1000 10000 100000 1000000

HMM

Training Size

F-
M

ea
su

re

Discriminative +
Clusters + Active

Figure 4: Cumulative Impact of Discriminative
Training, Clustering, and Active Learning

