Simple Semi-supervised Dependency Parsing

Terry Koo, Xavier Carreras and Michael Collins {maestro,carreras,mcollins}@csail.mit.edu

- Discriminative models for dependency parsing with flexible feature vector representations
- Parsers make heavy use of lexicalized statistics, which are sparse

Our Approach

- Use word clusters as coarse-grained lexical intermediaries
- Clusters are easily incorporated as features for a discriminative model
- Improvements over a state-of-the-art baseline in English and Czech

Previous Work

- Named-entity labeling with word clusters (Miller et al., 2004)
 - Brown et al. (1992) clustering algorithm
 - Perceptron training
- This talk: Dependency parsing with word clusters and discriminative training

Review of Dependency Parsing

- Linear model for structured prediction: $PARSE(\mathbf{x}) = \underset{y \in \mathcal{Y}(\mathbf{x})}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$
- Independence assumptions for tractability

Review of Dependency Parsing

NNVBD*The company's presidentquit suddenly

• First-order factorization: $PARSE(\mathbf{x}) = \underset{y \in \mathcal{Y}(\mathbf{x})}{\operatorname{argmax}} \sum_{d \in y} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, d)$

SUB

• Typical features are indicators for POS and word identity

Review of Dependency Parsing

- Second-order factorizations
- Labeled or unlabeled parsing

- Words merged according to contextual similarity
- Clusters are equivalent to bit-string prefixes
- Prefix length determines the granularity of the clustering

- Words merged according to contextual similarity
- Clusters are equivalent to bit-string prefixes
- Prefix length determines the granularity of the clustering

- Words merged according to contextual similarity
- Clusters are equivalent to bit-string prefixes
- Prefix length determines the granularity of the clustering

Brown Algorithm

Examples of clusters from our English experiments

01010101010011 constructed 01010101010011 elucidated 010101010110011 inhaled 010101010110011 rewritten

Past Participle Verbs

100111111100 precious-metal
100111111100 grain-futures
1001111111100 crude-oil-futures

Markets

Cluster-based Features

- Discriminative models use feature vector representations, e.g., $\mathbf{f}(\mathbf{x}, d)$
- Standard "baseline" features include indicators for word or POS conjunctions
- "Cluster-based" feature sets have additional templates containing clusters

Cluster-based Features

Cluster-based Features

Feature Pruning

- Cluster-based feature sets were very large and needed to be pruned for tractability
- Feature-count cutoffs were applied
- Eliminate features using word frequency
 - Only keep lexicalized features containing one of the top-800 most frequent words
 - Cluster-based features were relatively insensitive to this form of pruning

Experiments

- Clusters obtained from implementation of Liang (2005)
- Averaged perceptron training
- First-order and second-order parsing
- Labeled and unlabeled parsing
- Baseline and cluster-based feature sets

English Experiments

- Penn Treebank
 - Train on Sections 2-21
 - Validate on Section 22
 - Test on Sections 0,1,23,24
- Clusters were derived from the BLLIP corpus (~43 million words)

English Baseline Model

Parsing Model	Accuracy
McDonald (2006)	91.5
Second-order, baseline features	92.0

- Unlabeled head-prediction accuracy on Section 23
- Baseline model obtains state-of-the-art accuracy

English Labeled Parsing

Tost Sot	First-c	order parsing	Second	order parsing
lest Set	Baseline	Cluster-based	Baseline	Cluster-based
Sec 00	90.3	91.0 (+0.7)	91.3	92.1 (+0.8)
Sec 01	90.8	91.7 (+0.9)	91.9	92.7 (+0.8)
Sec 23	90.3	91.2 (+0.9)	91.4	92.1 (+0.7)
Sec 24	89.6	90.1 (+0.5)	90.4	91.2 (+0.8)

- Labeled head-prediction accuracy on all test sets
- Cluster-based features outperform baseline

- Examine the effect of the cluster-based features as the amount of training data varies
- High-quality POS tags are critical for parsing performance, leading to two scenarios

Training Sentences	Baseline	Cluster-based
1000	86.3	87.5 (+1.2)
2000	87.7	88.9 (+1.2)
4000	89.2	90.5 (+1.3)
8000	90.6	91.6 (+1.0)
16000	91.3	92.4 (+1.1)
32000	92.I	93.4 (+1.3)
39832	92.4	93.3 (+0.9)

 The POS tagger is always trained on the full 39832 sentences; the parser has less data

Training Sentences	Baseline	Cluster-based
1000	86.3	87.5 (+1.2)
2000	87.7	88.9 (+1.2)
4000	89.2	90.5 (+1.3)
8000	90.6	91.6 (+1.0)
16000	91.3	92.4 (+1.1)
32000	92.1	93.4 (+1.3)
39832	92.4	93.3 (+0.9)

 The POS tagger is always trained on the full 39832 sentences; the parser has less data

Training Sentences	Baseline	Cluster-based
1000	82.0	85.3 (+3.3)
2000	85.0	87.5 (+2.5)
4000	87.9	89.7 (+1.8)
8000	89.7	91.4 (+1.7)
16000	91.1	92.2 (+1.1)
32000	92.I	93.2 (+1.1)
39832	92.4	93.3 (+0.9)

The POS tagger uses the same training corpus as the parser

Training Sentences	Baseline	Cluster-based
1000	82.0	85.3 (+3.3)
2000	85.0	87.5 (+2.5)
4000	87.9	89.7 (+1.8)
8000	89.7	91.4 (+1.7)
16000	91.1	92.2 (+1.1)
32000	92.1	93.2 (+1.1)
39832	92.4	93.3 (+0.9)

The POS tagger uses the same training corpus as the parser

Czech Experiments

- Prague Dependency Treebank
 - Train/val/test as provided in the corpus
- Clusters were derived from the unlabeled text portion of the PDT (~39 million words)
- First-order non-projective parsing (MST), second-order projective parsing

Czech Unlabeled Parsing

Parsing Model	Baseline	Cluster-based
First-order MST	84.5	86.1 (+1.6)
Second-order	86.I	87.1 (+1.0)
Related Work	Accuracy	
McDonald (2005) first-order MST	84.4	
McDonald (2006) second-order	85.2	
Nivre and Nilsson (2005)	80. I	
Hall and Novák (2005)	85.I	

• Unlabeled head-prediction accuracy on test set

Training Sentences	Baseline	Cluster-based
1000	74.4	74.6 (+0.2)
2000	76.6	77.6 (+1.0)
4000	78.3	79.3 (+1.0)
8000	79.8	81.0 (+1.2)
16000	82.5	83.7 (+1.2)
32000	84.7	85.8 (+I.I)
64000	86.0	87.1 (+1.1)
73088	86. I	87.3 (+1.2)

• Used machine-assigned POS tags given in the corpus

Pruning Features by Word Frequency

Word Threshold	Baseline	Cluster-based
100	90.6	93. I
200	91.4	93.2
400	91.7	93.2
800	91.9	93.3
1600	92.2	
All words	92.4	

 Baseline features lose performance, but cluster-based features are stable

Effect of POS Tags

First-order parsing	Accuracy
no POS, no clusters	77.2
no POS, with clusters	90.7
with POS, no clusters (baseline)	90.9
Second-order parsing	Accuracy
Second-order parsing no POS, no clusters	Accuracy 86.7
Second-order parsing no POS, no clusters no POS, with clusters	Accuracy 86.7 91.8

• Clusters alone are almost as good as baseline

Conclusions

- Lexical statistics are important but sparse
- Word clusters serve as coarse lexical intermediaries
- Clusters carefully incorporated as features for a discriminative parser
- Performance gains over a state-of-the-art baseline model